
Ⅰ. Introduction

The proportion of online sales to total retail sales 
increased to 21.3% in 2020 from 10.7% in 2015 
(Digital Commerce 360, 2021). Despite this sub-

stantial growth in the e-commerce market and in-
creased traffic, online retailers still face a challenge 
in converting customers’ visits to purchases (i.e., vis-
it-to-purchase conversion). According to a survey, 
the average e-commerce visit-to-purchase conversion 
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rate is 2.27%, with conversion rates by industry rang-
ing from 1% to 4% (Ogonowski, 2021). Online re-
tailers have sought to implement diverse marketing 
strategies and decision support systems to improve 
their conversion rates. These efforts include e-coupon 
targeting, advertising campaigns, and product recom-
mendation systems. Nevertheless, most retailers have 
seen little improvement in their conversion rates.

To address this low conversion rate issue, a thor-
ough understanding of online customers’ behavior 
has been of great importance to online retailers. Unlike 
the high tendency in offline customers’ visits to result 
in purchases, most customer visits to e-commerce 
platforms end up browsing to search and compare 
products and opinions on them but only a small 
portion of the online customer visits result in making 
purchases. Accurate predictions of purchase behavior 
are fundamental to arriving at strategies to reverse 
these low visit-to-purchase conversion rates and in 
turn boost the performance of online retailers. If online 
retailers could predict the purchase likelihood of cus-
tomers during each visit, they could target those cus-
tomers rated most likely to make purchases with in-
dividualized marketing strategies, thereby reducing 
marketing costs and ultimately enhancing profitability. 
Customized marketing strategies based on precise pre-
dictions of customers’ purchase likelihood could con-
vert customers’ browsing to purchases within a given 
visit, significantly influencing the revenue of online 
retail platforms. Therefore, advances in real-time pre-
dictions of purchase behavior have meaningful prac-
tical implications for online retailers. 

Because of the growing availability of big customer 
data, scholars have attempted to identify diverse user 
behavior on online platform and predict customers’ 
behavior and especially their purchase behavior on 
e-commerce platform (Chaudhuri et al., 2021; Koehn 
et al., 2020; Mokryn et al., 2019). Existing literature 

on customer purchase behavior could be divided into 
two streams of literature. The first focuses on the 
dynamics of browsing patterns during a site visit (i.e., 
session1)) to predict purchases (Baumann et al., 2018; 
Bucklin and Sismeiro, 2009). Customers’ browsing 
patterns encompass every aspect of their behavior 
in interactions with e-commerce sites that are cap-
tured by clickstream data. Previous literature in this 
stream predicts session-level purchases and next-page 
visits by tracking customers’ dynamic browsing behav-
ior based on this data (Koehn et al., 2020; Wu et 
al., 2015). The second stream of literature has exam-
ined customers’ historical characteristics on online 
platforms. Compared with the other stream’s concen-
tration on dynamic browsing behavior during a site 
visit, this stream has focused on static customer-plat-
form interaction2) (i.e., customers’ past interactions 
with the online retailer) by aggregating past visits 
and transactions. For example, Park and Park (2016) 
examined the patterns of customers’ visits to predict 
purchase conversion. Existing works in this stream have 
investigated the impacts of customers’ demographics 
on purchase intention (Law and Ng, 2016). Further, 
research in this stream has examined the patterns of 
customers’ visits and purchases to predict a customer 
lifetime value (CLV) based on recency, frequency, and 
monetary value (RFM) (Fader et al., 2005).

Despite the vast of literature on online purchase 
behavior, these previous works have limitations. First, 
there is a paucity of research on purchase behavior 
prediction that encompasses customers’ character-

 1) In the online platform context, a session indicates a single 
visit to the platform.

 2) We regard customers’ demographics and customers’ past 
visits and purchases as static customer-platform 
interaction because those are obtained as fixed values 
based on historical information before the focal visit, 
compared with dynamic browsing behavior during the 
focal visit on the online platform.
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istics and the dynamic platform engagement aspects 
of e-commerce. Most previous studies on session-lev-
el purchase prediction have used clickstream data 
in focusing on the dynamics of browsing features 
(e.g., Baumann et al., 2018; Toth et al., 2017). 
However, customers’ buying decisions depend not 
only on their current dynamic behavior but also on 
their past interaction patterns with the platform (Park 
and Park, 2016). To comprehensively understand a 
customer’s purchase behavior within a given visit, 
both dynamic browsing patterns during the focal 
visit and the customer’s past interactions should be 
considered simultaneously. 

Second, although some extant studies considered 
dynamic platform engagement and customers’ char-
acteristics for session-level purchase behavior pre-
diction (Chaudhuri et al., 2021), those works dis-
regarded the dynamic browsing patterns of customers 
by aggregating them at the session level. This ap-
proach also has a limitation in that it is not applicable 
to a real-time purchase predictive method. Real-time 
predictions of purchase likelihood are crucial to en-
able online retailers to immediately implement their 
customized marketing strategies. To accomplish this, 
it is needed to properly process both dynamic plat-
form engagement and static customer features that 
have different modalities. Specifically, the static at-
tributes of customers are captured as a snapshot at 
the beginning of a given session, but dynamic brows-
ing patterns within the focal session should be proc-
essed sequentially at the page-view level. Because 
the static and dynamic platform engagement features 
of customers are composed of different data sources 
and representations but might contain comple-
mentary information (Koehn et al., 2020), we could 
expect that a multimodal fusion approach would im-
prove prediction results by taking both features into 
account. However, few works in this realm have 

adopted multimodal approaches that combine differ-
ent modalities into a joint representation to predict 
customers’ purchase behavior.

To address this gap, we undertook to develop a 
deep learning-based multimodal fusion method to 
predict session-level purchase behavior by compre-
hensively using both dynamic platform engagement 
and customers’ static attributes. Specifically, we ex-
tracted the dynamic platform engagement features 
from clickstream data and the static features of cus-
tomers from their profiles, visits, and transaction 
data. Then, we used a multimodal fusion approach 
with deep learning architectures to reflect different 
modalities and to improve predictive performance, 
including long short-term memory (LSTM), and mul-
tilayer perceptron (MLP).

We validated the performance of our model by using 
real-world e-commerce data over six months. Our re-
sults have important implications from both the aca-
demic and practical perspectives. Academically, we 
are among the first to propose a method for predicting 
customers’ purchase behavior based on a deep learn-
ing-based multimodal fusion approach that combines 
both dynamic platform engagement behavior and 
the static attributes of customers. We also extend 
the literature on predicting customers’ purchase be-
havior by adapting the recency, frequency, monetary 
value, and clumpiness (RFMC) measures that have 
been used to estimate customers’ value. From a prac-
tical perspective, online retailers can use our approach 
that predicts the purchase likelihood of customers 
in real time. Those businesses with low conversion 
rates will find our method especially helpful because 
our model can help them improve their real-time 
marketing efficiency by sorting customers in a given 
session into those most likely and less likely to make 
a purchase, thereby improving sales and overall busi-
ness performance.
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Ⅱ. Conceptual Background

2.1. Dynamic Platform Engagement: 
Clickstream Data

Dynamic platform engagement is defined as every 
browsing behavior of customers on online platform 
sites. This behavior contains information about 
awareness, interest, and consideration of the custom-
er’s decision funnel. Clickstream data is the main 
source of dynamic platform engagement data that 
captures user’s interactions with online platforms 
(Bucklin and Sismeiro, 2003). Previous literature em-
ployed clickstream data to predict a customer’s next 
visit (Bogina and Kuflik, 2017), purchase conversion 
(Park and Park, 2016; Zhu et al., 2019), and product 
choice (Iwanaga et al., 2016). In addition, this data 
is useful for real-time prediction of customers’ behav-
ior in e-commerce (Bucklin and Sismeiro, 2009). 
Given that a clear behavioral difference exists between 
with- and without-purchase sessions on e-commerce 
(Baumann et al., 2018; Lu et al., 2005), customers’ 
browsing patterns should be considered in predicting 
their purchases. Processing clickstream data for dy-
namic engagement features to predict customers’ be-
havior is broadly categorized into two methods: clip-
ping at every click and sequence classification.

First, the clipping at every click approach is to 
label each page view for prediction (VanderMeer 
et al., 2000). This approach is suitable for a standard 
classification problem using supervised machine 
learning because it processes page views into ag-
gregated metrics with a tabular format (Koehn et 
al., 2020). Specifically, each page view of sessions 
is labeled as a data point and labeled page views 
within a session are concatenated and transformed 
into a two-dimensional matrix format as feature 
vectors. Although the clipping at every click approach 

is useful to extract features that reflect the connectivity 
of page views in a session, this method cannot capture 
chronological order of page views within a session.

The sequence classification approach uses a se-
quence of pageviews as a single instance with a single 
label. This method uses each page view as a feature 
to predict the session outcome (Koehn et al., 2020). 
Consequently, this approach can preserve the tempo-
ral order of page views within a session, thus making 
this approach more suitable for deep learning models 
such as recurrent neural network (RNN)-based 
architectures. These architectures sequentially proc-
ess input features whereas classical machine learning 
models do not consider the temporal order of input 
features. Thus, recent studies have used RNN-based 
architectures for conversion classification based on 
clickstream data (e.g., Bogina and Kuflik, 2017; Sheil 
et al., 2018; Toth et al., 2017; Wu et al., 2015). This 
method also can incorporate diverse page-level fea-
tures, including page content, time spent on a page, 
and the number of page views (Koehn et al., 2020). 
However, the predictive performance of the sequence 
classification approach suffers because of the over-
fitting and noisiness inherent in the complex structure 
of clickstream data, which consists of tremendous 
number of routes and different sizes of session se-
quences (Bigon et al., 2019). 

In addition to these uses of clickstream data, our 
approach incorporates the use of the static attributes 
of customers to better understand the purchase deci-
sion-making processes of customers by supplement-
ing the information on their browsing patterns with 
their historical and demographic features.

2.2. Customers’ Static Features

Unlike dynamic engagement features, customers’ 
static attributes are predetermined based on previous 
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interactions with online retailers. That is, these static 
features encompass demographics and patterns of 
past transactions and visits, which remain unchanged 
while users are browsing pages in e-commerce. These 
features may not be directly related to real-time 
(session-level) predictions. Nevertheless, they have 
attracted considerable attention because these attrib-
utes have significant effects on customers’ behavior 
and loyalty (i.e., purchase behavior and CLV). 
Demographic characteristics, including age and gen-
der, have been regarded as key factors for predicting 
customers’ purchases and loyalty (Kim and Kim, 
2004; Larivière and Van den Poel, 2005; Ndubisi, 
2006; Sorce et al., 2005). 

Customers’ historical factors derived from data 
on their transactions and visits have been widely 
used to predict their value and behavior. Recency, 
frequency, and monetary value have been commonly 
used to estimate CLV. Moreover, RFM measures 
have been applied to predict customers’ purchase 
and spending (Wei et al., 2010). Van den Poel and 
Buckinx (2005) found that historical purchase factors 
based on RFM measures are significant for online 
purchasing behavior. Furthermore, Zhang et al. 
(2015) proposed the RFMC framework to estimate 
CLV. Unlike traditional RFM, clumpiness captures 
bingeable customer activities by measuring the tem-
poral intervals of customers’ visits and purchases 
(Zhang et al., 2013). Previous works found a sig-
nificant association of visit- and purchases-based 
clumpiness and a firm’s marketing performance in 
terms of customer churn and firm marketing per-
formance (Zhang et al., 2015). Because customers’ 
static features contain meaningful information re-
lated to their past behavior and loyalty, we in-
corporated them into our study as part of a compre-
hensive approach to predict session-level purchase 
behavior.

2.3. Online Purchase Prediction

In this section, we provide a systematic review 
of previous literature closely related to our research. 
We review recent studies on predicting purchase be-
havior at session level that employs dynamic or static 
features. As discussed in previous sections, we focus 
on detailed modeling approaches of each study in-
cluding whether dynamic or static features are used, 
which types of approach are employed to process 
clickstream data (dynamic platform engagement fea-
tures) and types of static features are used (customers’ 
static features), and which algorithms (models) are 
used. Moreover, we include applicability of models 
in real time scenarios. <Table 1> presents the summa-
ries of reviewed literature.

<Table 1> shows that most previous studies employ 
a unimodal feature type (i.e., dynamic platform en-
gagement feature or customers’ static feature) to pre-
dict purchase behavior. First, given distinguished 
browsing patterns between sessions with purchases 
and without purchases (Baumann et al., 2018), recent 
studies have attempted to use clickstream data to 
predict purchase behavior. In terms of processing 
clickstream data, both clipping at every click and 
sequence classification approaches are widely 
employed. As the clipping at every click approach 
transforms page views within a session into tabular 
form, studies using such approach used traditional 
machine learning approaches including logistic re-
gression, naïve regression, random forest and 
XGBoost (Baumann et al., 2018; Yeo et al., 2020). 
For example, Baumann et al. (2018) processed page 
views of session-level clickstream data as nodes in 
graph theory to extract graph metrics within sessions 
involving the structure, distance, and centrality of 
page views. Then, they used logistic regression to 
examine how these predictors affect customers’ pur-
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chase behavior. However, such approach has limi-
tations in a real-time prediction scenario. To model 
temporal dependencies of page views, recent studies 
also adopt the sequence classification approach to 
process clickstream data. <Table 1> reports that cor-
responding studies employed RNN-based archi-
tectures including LSTM and GRU (Bigon et al., 
2019; Koehn et al., 2020) as those algorithms are 
capable of modeling temporal dependencies of page 
views by sequentially processing input features. For 
example, Koehn et al. (2020) employ LSTM and GRU 
algorithms to predict shopping behavior (i.e., order 
values) by using the sequence classification approach 

for clickstream data. However, those studies using 
dynamic engagement features based on clickstream 
data have limitations that the prediction performance 
is low due to possible noisiness and do not consider 
customers’ static features.

Next, with great interest in customer lifetime value 
in the domain of marketing, corresponding studies 
have employed various customer static features to 
predict purchase behavior including age, gender, ten-
ure and RFM. Rahim et al. (2021) apply purchase-level 
RFM features to predict repurchase behavior. They 
used traditional machine learning models such as 
decision tree and support vector machine and deep 

Reference

Research Modeling Approach
Dynamic Platform 

Engagement Features 
(Clickstream data)

Customers’ Static 
Features Algorithms Dependent

Variable
Real-time 
Prediction

Baumann et al. 
(2018) Clipping at every click - LR, RF, XGB Purchase 

conversion -

Yeo et al. 
(2020) Clipping at every click - Naïve 

Regression
Purchase 

conversion -

Bigon et al. (2019) Sequence classification - LSTM Purchase 
conversion 

Koehn et al. (2020) Sequence classification - LSTM, GRU E-coupon 
redemption 

Chaudhuri et al. 
(2021) Clipping at every click

Customer attributes 
(frequency, age, gender, 

recency, and tenure)

DT, RF, SVM, 
ANN, DNN

Purchase 
conversion -

Esmeli et al. (2022) Clipping at every click
(Aggregation)

Purchase frequency, visit 
frequency, dates of visit 

and device used

RF, DT, 
Bagging, DNN

Purchase 
conversion -

Rahim et al. (2021) - RFM DT, SVM, MLP Repurchase
behavior -

Our Study Sequence classification

Visit and purchase-level 
RFMC and 

demographics (age and 
gender)

Multimodal 
fusion Approach
(LSTM + MLP)

Purchase 
conversion 

Note: Logistic regression (LR), random forest (RF), XGBoost (XGB), decision tree (DT), support vector machine (SVM), artificial neural 
network (ANN) and Deep neural network (DNN)

<Table 1> Reviews of Related Literature
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learning for tabular data such as MLP and simple 
DNN. Similarly, previous studies using both dynamic 
engagement features and customers’ static features 
employ various customers’ attributes including fre-
quency, recency, tenure, age, gender, device used and 
date of visits to predict purchase behavior at session 
level (Chaudhuri et al., 2021; Esmeli et al., 2022).

Last, a couple of studies employ both dynamic and 
static features to predict purchase behavior (Chaudhuri 
et al., 2021; Esmeli et al., 2022). However, those studies 
employ the clipping at every click approach to trans-
form sequential page views into session-level feature 
vectors comparable to customers’ static feature vectors 
at session level. However, this approach has limitations 
in that it cannot model sequential dependencies of 
page views within sessions. 

Taken together, despite importance of both dynam-
ic platform engagement and customers’ static features 
in predicting purchase behavior at session level, only 
a few prior studies employ both modalities. Even 
those studies employing both feature types have limi-
tations that they do not comprehensively encompass 
customers’ static features and model chronological 
orders of page views in terms of dynamic engagement 
features. In comparison with previous literature, our 
study employs the sequence classification approach 
to extract dynamic features that reflect temporal de-
pendencies at page-view level. In terms of customers’ 
static features, we comprehensively extract customers’ 
static features from transaction history data including 
visit and purchase-level RFMC, age and gender. 
Furthermore, to model different modalities of both 
features, we employ a multimodal fusion approach. 
This study is among the first to employ a multimodal 
fusion approach in the context of online purchase 
prediction. We present details of multimodal fusion 
approaches in the next section.

2.4. Multimodal Fusion Approach

A multimodal fusion approach aims to integrate 
data from different modalities into one representation 
for analysis tasks (Hu et al., 2019; Poria et al., 2017). 
By capturing complementary information, the multi-
modal fusion method can generate synergistic effects 
to increase the accuracy of overall predictions com-
pared with the performance of single models of each 
modality (Zhang et al., 2020b). The multimodal fea-
ture fusion approach has been widely used for data 
with complementary information such as static and 
dynamic features (e.g., Liu et al., 2019; Wang et al., 
2004). For example, texts and image data are applied 
for sentiment analysis and fake news detection (Zhang 
et al., 2020a; Yuan et al., 2021), and dynamic and 
static API call information is used to detect malware 
in cyberspace security (Han et al., 2019). Because 
dynamic platform engagement and customers’ static 
features on e-commerce platforms indicate different 
modalities, the multimodal fusion approach is suitable 
for capturing the probabilistic correlations and is ex-
pected to have better predictive performance.

Methods for multimodal fusion can be classified 
into three types―late, early, and intermediate. Late 
fusion (or decision level fusion) is the method in 
which the features of each modality are analyzed in-
dependently, and the results of each analysis are com-
bined to compute a final decision (Zhang et al., 2020a). 
Second is the early fusion approach. This method 
combines different modalities of raw data ahead of 
feature learning process for each modality (Dong et 
al., 2014; Glodek et al., 2013). Third, intermediate 
fusion (or feature level fusion) is the method that 
combines the early and late fusion strategies to avoid 
problems from each approach (Poria et al., 2015). 
This intermediate approach has advantages over early 
and late fusion because it can learn features within 
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each modality and better capture correlations between 
features from different modalities (Gao et al., 2020). 

In terms of dealing with multimodal data, early 
fusion is limited in timing the synchronization of 
different modalities, and late fusion ignores correla-
tions of features at the input level (Zhang et al., 2020b). 
In this regard, we adopt the intermediate fusion meth-
od as the best approach for combining different mo-
dalities of static and dynamic customer information 
captured from e-commerce data to predict customers’ 
purchase behavior. Specifically, we used different 
neural network architectures to learn features from 
each modality at an early stage. We then use a joint 
representation derived from the features at the early 
stage for a purchase behavior prediction task. <Figure 
1> shows an overview of the research framework 
in this study.

Ⅲ. Research Context and Data

For our study, we obtained data from K-Mall, 
a large online retailer in South Korea.3) At the end 
of 2020, K-Mall had a monthly average of approx-
imately 260,000 active users. The company sells nu-
merous products, ranging from apparel and cosmetics 
to groceries, through multiple channels such as PCs, 

 3) K-Mall is a pseudonym used for reasons of confidentiality.

mobile apps, and mobile sites. We obtained click-
stream and transaction data from the focal retailer. 
Specifically, our data set includes clickstream data 
with pageviews of customers’ session information 
(e.g., user ID, session ID, browser, page URL, and 
time spent on each page) and transaction data with 
customers’ demographics for 6-month period. The 
pages in the clickstream data consist of 16 major 
categories based on the page URLs provided by the 
company (see <Appendix A>). <Figure 2> presents 
flowchart of our analytical procedure for predicting 
purchase behavior using clickstream and transaction 
data.

We preprocessed the data as follows. First, we de-
leted incomplete sessions and those of only one page 
view; we regard these as “bouncers” uninterested in 
the website and having no intention of making a 
purchase. Second, we removed users whose channel 
was not a mobile browser, which consists of lower 
than 10% of the entire sessions because online custom-
ers’ behavior may differ depending on the context 
(e.g., mobile or PC) (Wagner et al., 2020). Third, 
with-purchase sessions were pruned of con-
firmation-of-purchase pages (i.e., order page) because 
the goal of our model was to predict customers’ 
purchase behavior at the session level. As a result, 
the cleansed clickstream data consisted of 217,063 
page views with 47,732 unique sessions of 16,067 

<Figure 1> Research Overview
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distinct active customers. Of these cleansed sessions, 
32,604 were of confirmed purchases and no purchase 
was observed in the rest 15,128 sessions. We then 
split the preprocessed data set into training and test 
set. The training and data sets consist of 33,412 and 
14,320 sessions, respectively.

Ⅳ. Methodology

Dynamic and static feature extractions and mul-
timodal fusion model in the proposed method 
are presented in <Figure 3>. We first processed 
data from clickstream, customers’ profiles, trans-
actions, and visits to extract customers’ dynamic 
and static features. These features were then fed 
into the deep learning architectures with the multi-
modal fusion approach for a binary purchase 
classification.

4.1. Feature Extraction

The features for predicting customers’ purchases 
in e-commerce are divided into two extraction proc-
esses according to customers’ e-commerce behavior
― static and dynamic feature extraction. When a 
customer lands on an e-commerce page, the custom-
ers’ static features are retrieved based on visit and 
transaction records and demographics. Dynamic plat-
form engagement features are sequentially captured 
by page views within single session at the e-commerce 
site. In summary, we processed data on transactions 
and visits to extract static features and clickstream 
data for dynamic features.

To capture customers’ static features, we adopted 
the RFM analysis and the clumpiness measure in 
previous works (Fader et al., 2005; Zhang et al., 2013; 
Zhang et al., 2015). We computed purchase-based 
RFMC and visit-based frequency and clumpiness, and 
then coded those measures at a session level. 

<Figure 2> Flowchart of Analytical Procedure
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Specifically, we defined the purchase-level recency 
(Purchase-R) as the number of days since the last 
purchase. Purchase-R thus represents the number of 
days without a purchase. Visit- and purchase-level 
frequencies (Visit-F and Purchase-F) were measured 
by the number of visits or transactions during the 
past eight weeks. We defined monetary value 
(Monetary value) as the total amount of transaction 
values for the past eight weeks. Finally, we captured 
visit-level clumpiness and purchase-level clumpiness 
(Visit-C and Purchase-C), which we defined as the 
extent to which visiting or buying intervals are regu-
larly distributed (see details in <Appendix C>). Both 
clumpiness features were measured from 0 to 1, in 
which, if a customer had high clumpiness, then the 
customer had binge visiting and buying patterns. 
<Table 2> indicates the description of RFMC features 
and their measurement formula used in this study. 
We also used demographic information to extract 
customers’ ages and gender. In sum, we obtained 
eight customer static features for our predictive 
modeling. The descriptive statistics of those features 

are presented in <Table 3>.     
To extract dynamic platform engagement features, 

we used the sequence classification method to process 
clickstream data. We first prune sessions into length 
of 15 given that 95.6% of sessions are comprised 
of less than and equal to 15 pageviews. Then, we 
zero-pad sessions which have less than 15 pageviews. 
Pruning is suitable for real-time purchase prediction 
with incomplete sessions (Koehn et al., 2020). Each 
row of clickstream data that consists of a session 
ID, page category, and time-on-page corresponds to 
a single page view in a session. By using the cleansed 
clickstream data, we extracted entire page views of 
each session as well as time-on-pages. Notably, we 
observed there is a difference between with- and 
without-purchase sessions in that the former has 
more page views and is more prone to repeat product 
detail pages (see <Table B1>, <Appendix B>). This 
is in line with a previous finding that reoccurring 
product page visits are important predictors of pur-
chase behavior (Baumann et al., 2018). Capturing 
such patterns of purchase sessions may have sig-

<Figure 3> Proposed Prediction Framework
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nificant predictive power. These dynamic engage-
ment features and customer static features were in-
corporated into inputs for our proposed model. 
<Table 4> shows the examples of chronological orders 
of pageviews for dynamic feature learning.      

4.2. Proposed Model

To predict session-level purchase behavior, we pro-
posed a model based on a multimodal fusion with 
deep learning architectures. The proposed model 
aims to fuse dynamic platform engagement and cus-
tomer static features into a joint representation for 
session-level purchase prediction. By using an inter-
mediate fusion approach, our multimodal fusion 
model consisted of four steps―input data pre-
processing, individual feature learning, fusion, and 
classification. In the input data preprocessing step, 
we prepared two modalities of dynamic and static 
features to feed into separate neural network 
architectures. For dynamic features, we used the se-
quence inputs of page views and time-on-page from 
clickstream data. We processed the page-view vector 

Features Description Formula of Measurement
Purchase-R Number of days since the last purchase

Visit-F Number of sessions (visits) during the past 8 weeks

Purchase-F Number of transactions during the past 8 weeks

Monetary value Total amount of transaction value during the past 8 weeks

Visit-C Variation in visiting intervals

Purchase-C Variation in buying intervals

Note: TP indicates dates of purchase session in session p; Fv and FP denote the number of visits and purchases during the past 
eight weeks, respectively; MP represents the total amount of purchase during the past eight weeks. For clumpiness measures, 
n denotes the number of visits and purchases, respectively, and XV and XP indicate the interevent times (IETs) of visits 
and purchases (see measurement details in <Appendix C>).

<Table 2> Description and Formula of RFMC Measurement

Pageview Orders #1 #2 #3 #4 #5 #6 … #15

S1:

Page 
category 2 1 2 0 0 0 … 0

Time on 
page 7 5 12 0 0 0 … 0

S2:

Page 
category 1 4 4 4 4 12 … 0

Time on 
page 10 6 8 20 15 5 … 0

<Table 3> Summary Statistics of Customers’ Static Features

Features Mean SD
Purchase-R 35.536 28.772

Visit-F 14.213 34.019
Purchase-F 1.023 4.894

Visit-C 0.426 0.495
Purchase-C 0.534 0.495

Monetary value 31.105 162.073
Age 34.9 1.408

Gender (Female) 0.87 -
Note: The currency for Monetary value is in U.S. dollars (1 dollar 

= 1,100 Korean Won).

<Table 4> Examples of Pageviews and Time on 
Page Within Sessions
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sequence as , where  
and  denote the l-th page category and time-on-page, 
and L stands for session length. These session vectors 
were prepared for inputs of LSTM architecture that 
effectively analyzes the temporal dynamic depend-
encies of sequences (Hochreiter and Schmidhuber, 
1997). For static features, we used eight features de-
rived from demographics and RMFC measures by 
using customers’ profiles, transactions, and visit data. 
These features were processed as the standard vector 

formats, , to be fed into MLP, which 
has been commonly used for tabular data.

In the individual feature learning step, input data 
preprocessed in the previous step was separately fed 
into the neural network architectures to learn different 
features, including MLP and LSTM. The MLP archi-
tecture for static feature learning was composed of 
three hidden layers with the rectified linear unit 
(ReLU) as the activation function:

. (1)

In (1),  represents the hidden state of the m-th 
layer;  as the input is the static feature matrix, 
X;  denotes the weight matrix of m-th layer; 
and  is the bias vector. The output from the 
MLP architecture was used for static feature 
representation. In the MLP structures, we used multi-
ple hidden layers instead of one hidden layer with 
many neurons because they capture nonlinear rela-
tionships better in the data set (Saide et al., 2015). 

For dynamic feature learning, we used LSTM 
architecture. The architecture for the dynamic feature 
is composed of two layers of the LSTM. The LSTM 
consists of a memory cell and several gates, including 
an input gate, a forget gate, an output gate, and 
a hidden state (see LSTM cell details in <Appendix 
D>), which can capture long-range dependencies by 

controlling the proportion of information from a 
previous state and the input to the memory cell 
(Hochreiter and Schmidhuber, 1997). The session 
vectors, , were sequentially processed as inputs for 
the LSTM layer. The output from the LSTM was 
used for the dynamic feature representation:

. (2)

In (2), LSTM denotes the LSTM network at the n-th layer 
and  represents input vectors at timestep l. 

In the fusion step, the static feature representation 
at the m-th layer, , and the dynamic feature 
representation at the n-th layer, , were con-
catenated to build a joint representation:

. (3)

In (3), “ ” indicates a concatenation operator. The 
joint representation, , generated from two modal-
ities in the fusion stage was finally fed into the 
MLP to produce the session-level classification result 
(i.e., purchase and nonpurchase). Our model in the 
classification step consists of two layers of fully con-
nected neural networks. The classifier layer is as 
follows:

. (4)

In (4),  represents the hidden layer output of d-th 
layer in the fusion stage.  represents the weight 
matrix and  is the bias vector at d-th layer. Our 
model adopted the negative log likelihood as the 
loss function to be minimized.

In the following section, we report the performance 
evaluation of the proposed model and compare it 
with baseline models to validate our model. To devel-
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op the proposed models, we used Keras 2.8.0, a neural 
networks library. Keras library acts as an interface 
for the TensorFlow library 2.8.2, an open-source 
platform for machine learning developed by 
Google Brain. Our proposed model is summarized 
in <Figure 4>.

4.3. Evaluations

We used diverse metrics for classification tasks 
to evaluate predictive performance. First, we used 
precision, recall, and the F-measure.

Given that our data consists of a myriad of sessions 
without purchase, these evaluation metrics are rele-
vant and widely used for imbalanced data (He and 
Ma, 2013). Second, the area under the receiver operat-
ing characteristic (ROC) curve (AUC) was used to 

compare the performance of the models (Bradley, 
1997). Compared with the first performance meas-
ures, the AUC allows comparison of the aggregate 
measures of performance at various threshold 
settings. Third, we applied cumulative gains and lift 
charts (Jamal and Bucklin, 2006), which are popular 
business value measurements (Ling and Li, 1998). 
These assessment approaches have been widely used 
in the literature on purchase behavior prediction (e.g., 
Baumann et al., 2018; Park and Park, 2016). 

<Figure 4> Pseudocode of Proposed Model

(6)

(7)

(8)
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Specifically, the cumulative gains chart indicates the 
percentage of purchase cases by targeting a certain 
percentage of the population, which is ordered ac-
cording to a model’s estimated purchase probability. 
Based on the cumulative gains chart, the lift measure 
is defined as the ratio of the cumulative gains from 
a model to those from a random sample. In this 
regard, those measurements are directly related to 
the profitability of marketing practice.

Ⅴ. Results

5.1. Comparison with Baseline Models

Our model uses LSTM and MLP to base its multi-
modal feature fusion on dynamic and static features. 
We considered six baseline models using dynamic 
or static features to compare the performance of 
the proposed model. First, we used bi-directional 
LSTM (BiLSTM) for dynamic feature learning in 
multimodal fusion model (see architecture of 
BiLSTM in <Appendix D>). Recent studies in various 
prediction contexts have shown improvement in per-

formance by using BiLSTM architecture (Siami- 
Namini et al., 2019; Yang and Wang, 2022). We 
do not use BiLSTM approach in the main proposed 
model as it is not applicable in a real-time prediction 
task, which is our main interest of purchase prediction 
model development. This approach employs future 
browsing information (i.e., page views after the cur-
rent page view) to predict the outcome of focal session 
but future page views are not available in live scenario 
(Koehn et al., 2020). In this regard, we used this 
approach as an advanced approach to compare pre-
diction performances with our proposed model.

Second, we used LSTM and BiLSTM classifiers 
using dynamic platform engagement features. Third, 
we used an MLP classifier with customer static 
features. If either of these unimodal baseline models 
were to outperform our proposed model, then we 
would not have to proceed to build a complex multi-
modal fusion model with dynamic and static features, 
which incur higher computation costs. 

Third, we considered an alternative approach that 
used traditional machine learning algorithms. In 
comparative testing of the clipping at every click meth-
od that processes clickstream data into aggregated 

Layer Hyperparameters Search Space Selected Values

MLP in Individual 
Feature Learning

Number of hidden layers 1-3 3
Number of neurons 32,64,128 32

LSTM in Individual 
Feature Learning

LSTM 

Number of hidden layers 1-3 2

Number of neurons 32,64,128 64

Fusion Layer
Number of hidden layers - 1

Number of neurons 32,64,128 32
Optimizer Adam, RMSProp Adam
Batch size 32,64 32

Activation Function in hidden layers ReLU, Tanh ReLU
Activation Function in output layer - SoftMax

<Table 5> Network Structure and Hyper-Parameter Setting
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features, we used a random forest classifier to predict 
purchases. This approach has been used for purchase 
classification tasks (e.g., Baumann et al., 2019; Moe 
and Fader, 2004). Following the previous studies, 
we used duration of session, number of clicks by 
page categories, age, gender, RFMC features for pre-
dicting purchase behavior. Finally, we used a logistic 
regression classifier with historical factors to evaluate 
its predictive powers, including customers’ visits and 
purchase-level recency and frequencies. Earlier works 
in this realm indicated that historical factors are a 
strong classifier (Van den Poel and Buckinx, 2005).

5.2. Model Performance

We first examined different configurations of our 
proposed model architecture. The selected values of 
hyperparameter settings are present in <Table 5>. 

The prediction performance metrics of 15 different 
configurations (changing layers for dynamic and stat-
ic feature learning) based on the proposed model 
is presented in <Table 6>. In addition to LSTM ap-
proach, we report BiLSTM approach for dynamic 
feature learning in the proposed model. As a result, 
we observe that the model with two LSTM layers 
for dynamic feature learning and three MLP layers 
perform the best although overall performance of 
other configurations also performed better than base-
line models.

<Table 7> summarizes the precision, recall, and 
F-measure of our model and the baseline models. 
We can see that multimodal fusion models (i.e., 
LSTM+MLP and BiLSTM+MLP) outperformed un-
imodal classifiers in precision and in the F-measure. 
The results reveal the importance of considering both 
dynamic and static features to predict customers’ be-

Parameter Settings Performance
Layers for Dynamic Feature 

Learning
Layers for Static Feature 

Learning Precision Recall F-Measure

LSTM MLP

1
1 0.863 0.973 0.915
2 0.867 0.99 0.924
3 0.879 0.978 0.926

2
1 0.864 0.979 0.918
2 0.874 0.984 0.926
3 0.884 0.974 0.927

3
1 0.861 0.993 0.922
2 0.878 0.977 0.925
3 0.879 0.977 0.925

BiLSTM MLP

2
1 0.878 0.968 0.921
2 0.888 0.964 0.925
3 0.883 0.978 0.928

3
1 0.868 0.983 0.922
2 0.886 0.968 0.925
3 0.887 0.959 0.922

<Table 6> Performances of Different Hyper-Parameters
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havior through direct comparisons of our model with 
unimodal classifiers such as MLP, LSTM and BiLSTM 
using static or dynamic features. The DS-Fusion model 
had a higher F-measure (0.927) than either of these base-
line models (0.908, 0.837 and 0.841, respectively). 

The results indicate that the baseline models with 
the MLP and logistic regression had higher recall 
rates than our model. However, these baseline models 
were much less precise, returning many false positives. 
Such a shortcoming by these baseline models would 
be a serious problem in target marketing through 
erroneously selecting as potential buyers online visi-
tors with low intention to purchase. In addition, the 
results reveal that the F-measure of the model with 
the static feature (MLP) is higher than that of the 
logistic regression model (i.e., 0.908 vs. 0.799). And 
the F-measure of the model with the dynamic features 
(LSTM) is higher than that of the random forest 
classifier that uses the clipping per every click approach 
(i.e., 0.837 vs. 0.799). 

We also compared the performance of our model 
with the baselines by using ROC curves that consider 
various classification threshold settings. The ROC 
curves were plotted with a true positive rate on the 
x-axis against the false positive rate on the y-axis, 
depending on the classification threshold. <Figure 
5> presents comparisons of these ROC curves. The 
curve of our model approaches closer to the top left 

of the graph than any of the baseline models. In 
addition, the AUC in <Table 7> confirms that the 
multimodal fusion models performed better (i.e., 0.91) 
than the baseline models by at least 7%.

For further validation of our model, we conducted 
a t-test using 10-fold cross-validation (Wang and Xu, 
2018). Specifically, we obtained 10 F-measure scores 
for each model from the cross-validation. Then, we 
conducted a t-test to compare the F-measure of our 
model with those of the baseline models. The results 
indicate that the F-measure of the DS-Fusion model 
is significantly higher than that of traditional machine 
learning models and unimodal classifiers (i.e., MLP, 
LSTM and BiLSTM). For instance, the difference be-
tween the F-measure of our model (mean = 0.935) 
and the best baseline model― the MLP model with 
static features (mean = 0.92; t = 3.203, p < 0.05)―is 
statistically significant. However, in terms of multi-
modal fusion models (i.e., LSTM+MLP and 
BiLSTM+MLP), the results of t-tests show that the 
performance difference between two models is not 
statistically significant (t = -0.2365, p = 0.816). This 
implies that the prediction performances of both 
models are not different but comparable.

For real time prediction, the model should be fast 
enough to produce prediction likelihood to be effec-
tive in marketing strategies. <Table 8> reveals sum-
mary statistics of prediction runtimes of the proposed 

Model Precision Recall F-Measure AU-ROC
MLP 0.836 0.99 0.908 0.84

Random forest 0.777 0.833 0.804 0.69
Logistic regression 0.667 0.99 0.799 0.72

LSTM 0.762 0.929 0.837 0.73
BiLSTM 0.766 0.932 0.841 0.74

DS-Fusion (LSTM+MLP) 0.884 0.974 0.927 0.91
BiLSTM + MLP 0.883 0.978 0.928 0.91

<Table 7> Comparison of Model Performance
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model and baseline models. Specifically, two models 
using multimodal fusion approaches (i.e., LSTM + 
MLP and Bi-LSTM + MLP) are relatively slower than 
the unimodal models (i.e., LSTM, BiLSTM and MLP). 
However, the average runtime of the proposed model 
(LSTM + MLP) indicates 44.826 milliseconds, suffi-
ciently fast to be employed for real-time prediction.

Furthermore, we assessed effects of different feature 
sets on prediction performance by designing eight 
scenarios involving the main feature sets. For static 
features, we used baseline features (gender and age), 
visit-level features (Visit-F and Visit-C), and pur-
chase-level RFMC features (Purchase-R, Purchase-F, 
Monetary value, and Purchase-C). For dynamic fea-

tures, we used different sizes of dynamic input features 
by pruning page length (i.e., 3 to 15 pageviews and 
time on page) as follows:

⦁Scenario A: Dynamic features (up to 15 page-
views and time on page) + gender + age

⦁Scenario B: Dynamic features (up to 15 page-
views and time on page) + gender + age 
+ 2 visit-level RFMC features

⦁Scenario C: Dynamic features (up to 15 page-
views and time on page) + gender + age 
+ 4 purchase-level RFMC features 

⦁Scenario D (Full model): Dynamic features 
(up to 15 pageviews and time on page) + 
entire static features (8 static features)

⦁Scenario E: Dynamic features (up to 12 page-
views and time on page) + entire static features 

⦁Scenario F: Dynamic features (up to 9 page-
views and time on page) + entire static features 

⦁Scenario G: Dynamic features (up to 6 page-
views and time on page) + entire static features 

⦁Scenario H: Dynamic features (up to 3 page-
views and time on page) + entire static features

<Figure 5> Comparison of ROC-Curves of Models

Model Mean of Runtimes S.D. of Runtimes
MLP 39.340 15.664

LSTM 41.145 18.524
BiLSTM 41.417 19.601

DS-Fusion 
(LSTM+MLP) 44.826 20.189

BiLSTM+MLP 46.544 24.345
Note: Runtime is in milliseconds

<Table 8> Prediction Runtimes of Models
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To assess the performance of each scenario, we 
employed the proposed multimodal fusion model. 
<Table 9> presents the prediction performance of 
each scenario. It shows that Scenario D using entire 
dynamic and static features outperforms the other 
scenarios. In terms of static features, we can observe 
that both visit and purchase-level RFMC features 
(Scenario B and C) significantly improve prediction 
performances compared to Scenario A based on base-
line static features (i.e., gender and age). When it 
comes to dynamic features, we can see slight but 
gradual improvement in prediction performances as 

more pageviews are employed for dynamic feature 
learning (Scenario D-H).

In addition to prediction performances, we evaluate 
the models in terms of business value. <Figure 6> 
illustrates the cumulative gains and lift curves, 
respectively. In <Figure 6>, the cumulative gains chart 
shows the ratio of the with-purchase sessions if the 
marketing initiative targets a certain percentage of 
sessions. The chart indicates that our model and the 
baseline models are all significant improvements over 
the results with random targets, which are represented 
as a diagonal line. For example, our model allows 
us to identify 69% of potential buying sessions by 
targeting 50% of the samples, which indicates that 
our model improves 38% ((0.69 – 0.5) / 0.5), com-
pared with the random sample. Moreover, our model 
(DS-Fusion) has an obviously steeper curve than 
those of the baseline models. The lift chart in <Figure 
6> indicates that the lift index of our model exceeds 
that of the baseline models until approximately 78% 
of the samples are targeted. These results indicate 
that our model outperforms the baseline models at 
identifying potential buyers.

Scenarios Precision Recall F-Measure
Scenario A 0.766 0.928 0.839
Scenario B 0.856 0.943 0.898
Scenario C 0.886 0.96 0.922
Scenario D 0.884 0.974 0.927
Scenario E 0.869 0.992 0.926
Scenario F 0.871 0.972 0.919
Scenario G 0.867 0.967 0.914
Scenario H 0.866 0.961 0.911

<Table 9> Comparisons of Impacts of Feature 
Combinations

<Figure 6> Comparison of Cumulative Gains and Lift Index curves of Models
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Ⅵ. Discussion

6.1. Discussion of Findings

Because of the extremely low purchase conversion 
rate among online customers, a thorough under-
standing of online purchase behavior is of great im-
portance to online retailers. They would especially 
benefit from the capability to accurately predict the 
purchase behavior of customers during a given session. 
Thus equipped, marketing managers then could target 
these susceptible customers with customized and tar-
geted marketing, thus facilitating visit-to-purchase 
conversions. In addition, adopting advanced machine 
learning algorithms has become imperative because 
of their capability to extract insightful information 
from the abstract and complex representations of data, 
leading to high predictive performance (Najafabadi 
et al., 2015). Motivated by such practical concerns 
and a gap in the previous literature, we used dynamic 
platform engagement and customers’ static features 
to develop a deep learning-based multimodal fusion 
model to predict session-level purchase behavior.

Our experimental results show our multimodal 
model outperforms unimodal classifiers. This notion 
implies that dynamic platform engagement and cus-
tomers’ static attributes play complementary roles in 
explaining customers’ buying behavior, resulting in 
improved predictive power (Chaudhuri et al., 2021). 
Our results show that the deep learning-based multi-
modal fusion approach can appropriately capture and 
learn representations of different modalities.

Although recent studies have shown improvement 
in performance by using BiLSTM over LSTM archi-
tecture (Siami-Namini et al., 2019), our results show 
that the performance of the proposed model using 
LSTM for dynamic feature learning is comparable 
with that of other multimodal fusion model using 

BiLSTM. In addition, given that BiLSTM approach 
is less applicable in a real-time prediction task, we 
can suggest that LSTM approach is more suitable 
in real-time purchase prediction task. Lastly, our re-
sults show that the deep learning models such as 
LSTM, BiLSTM and MLP have higher predictive pow-
er than the traditional machine learning models such 
as random forest and logistic regression. These results 
further support previous studies that have shown deep 
learning-based models have greater predictive power 
for large data sets than conventional machine learning 
models (Chaudhuri et al., 2021; Lee and Choeh, 2014). 
This is because the deep neural network structure 
better accommodates learning nonlinear relationships. 

6.2. Implications for Research and Practice

This study has several important implications for 
academics and practice. First, from an academic per-
spective, our study is among the first to propose 
a deep learning-based multimodal fusion method 
in the context of online purchase prediction. By using 
actual e-commerce data, our multimodal fusion 
method empirically demonstrated its predictive supe-
riority in comparisons with unimodal models and 
conventional machine learning models. These com-
parisons supported arguments advanced in previous 
studies for the importance of multimodal fusion ap-
proaches to enhance overall predictive performance 
because these methods can efficiently learn different 
modalities of data (Rastgoo et al., 2019; Zhang et 
al., 2020b). However, literature on purchase pre-
dictions of online customers has still struggled and 
rarely attempted to combine different modalities of 
customers’ features. In this regard, our proposed 
model using the multimodal fusion method may pave 
the way for predictions of online purchase behavior 
by effectively combining two different modalities in 
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online customer data sets (i.e., clickstream data and 
transaction data). 

Second, our study contributes to the literature on 
predicting customers’ behavior by incorporating CLV 
in marketing domain into computational methods. 
We use the RFMC analysis to predict session-level 
purchase behavior. The RFMC analysis has been 
widely applied to customer segmentation and CLV 
estimation (Chen et al., 2012; Zhang et al., 2015). 
Few studies have adopted RFMC measures to enhance 
predictive performance in purchase prediction con-
text (Moro et al., 2015). This study has demonstrated 
that those RFMC-derived features have a high pre-
dictive power for customers’ purchase behavior by 
extracting features of customer historical interactions 
with e-commerce platforms. Unlike dynamic plat-
form engagement features, features derived from the 
RFMC analysis can be easily extracted from trans-
action and visit data. Hence, we can argue that this 
study paves new ways for adapting RFMC analysis 
to predict customers’ diverse behavior.

Third, the usage of advanced deep learning and 
machine learning techniques in our study reflects 
the increased interest in artificial intelligence and 
big data applications in diverse contexts, especially 
in online retail and customers’ behavior (Herhausen 
et al., 2020; Rust, 2020). We provide further evidence 
for the relevancy of applying deep learning techniques 
for large data sets by comparing the predictive per-
formance of deep learning algorithms with those of 
machine-learning algorithms. Future research in this 
domain could consider these deep learning methods 
to enhance predictive power, compared to conven-
tional alternatives.

This study has important practical implications. 
First, as our model outperformed diverse baseline 
models and produced reliable predictive perform-
ance, this method can be applied to the actual e-com-

merce market. Using our method, online retailers 
can predict customer purchase behavior in real time. 
Based on computed purchase likelihood at session 
level, e-commerce platforms can conduct personal-
ized target marketing initiatives in real time. This 
allows marketing managers at online retailers to re-
duce unnecessary costs and to maximize their rev-
enues by better sorting customers into targets.In addi-
tion, our comprehensive use of customer transaction 
data for static feature learning shows significant im-
provement in prediction performance. With in-
creased privacy concerns of customers, e-commerce 
confronts with difficulties in collecting personal 
information. In this regard, our predictive results 
can provide guidelines for collecting data to be effec-
tively applied for marketing strategies.

6.3. Limitations and Future Research

Despite the significant contributions of this study, 
this study has some limitations, which offer valuable 
opportunities for future research. First, we employed 
clickstream and transaction data of customers from 
a large e-commerce in South Korea. Therefore, future 
research could be conducted using sizable real-world 
data sets from different countries to further generalize 
our results. As customer behavior might differ de-
pending on their cultural backgrounds and demo-
graphics, the predictive performances might not be 
generalized. In addition, future studies could inves-
tigate the fusion of different sources of customer 
data, such as images, text, and videos, in order to 
improve the accuracy and comprehensiveness of pre-
dictive models. This is especially relevant given the 
growing trend of using diverse data sources in IS 
research (Sun et al., 2022). Second, regarding our 
study design, we focus on browsing patterns of the 
focal session in predicting purchase behavior. 
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However, future research could expand upon this 
by also considering browsing patterns from previous 
sessions and using dynamic feature learning techni-
ques, such as concatenating adjacent sessions. 
Additionally, while we utilized LSTM, BiLSTM, and 
MLP for multimodal feature fusion, future research 
could explore alternative network architectures to 
improve predictive performance. One possible option 
is to apply dynamic features to a deep transformer 
architecture, which utilizes self-attention mecha-
nisms to capture complex dynamics in sequential 
data. Last, our proposed model is limited in terms 
of interpretability of prediction results, which may 
impede practical application in business settings. 
Thus, we urge future research to consider developing 
explainable models using surrogate explanatory 
models. These models are expected to provide deeper 
domain understanding and enable proactive deci-
sion-making based on the model’s predictions 
(Choi et al., 2022).

Ⅶ. Conclusion

In this study, we developed a deep learning-based 
multimodal fusion model (DS-Fusion model) for pre-
dicting purchase behavior. We first extracted dynam-

ic platform engagement and customers’ static attrib-
utes based on the data generated through customers’ 
browsing patterns and their historical interactions 
with an e-commerce platform. We then proposed 
the multimodal fusion method with deep learning 
architectures to learn individual modalities and obtain 
joint feature representations, thereby predicting a ses-
sion-level purchase behavior. The results of the experi-
ment show our deep learning-based multimodal fu-
sion model outperformed diverse baseline models that 
were based on deep learning and on conventional 
machine-learning algorithms. Marketing managers 
and platform designers in online retail platforms 
could apply our predictive model to improvise per-
sonalized marketing initiatives such as real-time 
e-coupons and to improve product recommendation 
engines that reflect customers’ purchase likelihood 
in each session. These applications will enhance over-
all operating efficiency for online retailers without 
disruptive changes to their systems.
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<Appendix A> URL category

Category
Index Page URL Page Category

1 /main/initMain.action Main
2 /search/search.action?kwd= Search
3 /shop/initShopBest100.action Best shop
4 /goods/initGoodsDetail.action?goods_no= Product detail
5 /shop/initPlanShop.action?disp_ctg_no= Plan shop
6 /shop/initShopLuckyDeal.action Deal
7 /shop/initEkidsShop.action Kids shop
8 /shop/initPlanShopMain.action Exhibition shop
9 /dispctg/initDispCtg.action?disp_ctg_no= Display

10 /dispctg/searchBrandIndexBaseInfo.action Brand search
11 /dispctg/initBrandShop.action?brand_no= Brand shop
12 /cart/initCart.action Cart
13 /order/initOrder.action?cart_no= Order
14 /mypage/initMypageMain.action My page
15 /mypage/initMyPointList.action My page point
16 /mypage/initMyCouponList.action My page coupon

<Table A1> Page URL and Categories
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<Appendix B> Page View Patterns 

Session Rank Page View Pattern Percentile

Without 
Purchase

1 Product detail → Product detail 27%
2 Exhibition shop → My page 13%
3 Product detail → Product detail → Product detail 5.2%
4 My page → Exhibition shop 4.4%
5 Main → Plan shop 3.8%

With Purchase

1 Product detail → Product detail 17%
2 Product detail → Product detail → Product detail → Product detail 11%

3 Product detail → Product detail → Product detail → Product detail → Product detail 
→ Product detail 6.9%

4 Display → Display 5.4%

5 Product detail → Product detail → Product detail → Product detail → Product detail 
→ Product detail → Product detail → Product detail 4.4%

<Table B1> Comparison of Patterns between Sessions without Purchase and with Purchase



Predicting Session Conversion on E-commerce: A Deep Learning-based Multimodal Fusion Approach

764  Asia Pacific Journal of Information Systems Vol. 33 No. 3

<Appendix C> Visit- and Purchase-Based Clumpiness Measure

Following RFMC measures of previous works (Zhang et al., 2013; Zhang et al., 2015), we measure the 
clumpiness of visit and purchase. We first process customer transaction and visit data to daily incidence 
data. Second, we compute the inter-event times (IETs) of visits and purchases, respectively:

(9)

In (9),  denotes the occurrence time of ith event and  indicates the IETs of customer visits. N 
is the total time intervals. Then, to control for observation window size, we rescale the inter-events times, 

, by diving it by N+1. Last, we compute visit-based clumpiness as follows:

(10)

Similar to the visit-based clumpiness measure, we compute purchase-based clumpiness by replacing the 
inter-event times of visits to the those of purchases as follows:

(11)

In (11),  indicates the IETs of purchases.
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<Appendix D> LSTM and BiLSTM Network Architecture

LSTM network as an extension of RNN was introduced to address the problem of long-term dependency 
(Hochreiter and Schmidhuber, 1997). LSTM cell is comprised of input, forget and output gates, and cell 
state. Specifically, those gates are computed using the input vector and previous hidden state vector, and 
the hidden state is computed using cell state and output gate as follows:

(12)

(13)

(14)

(15)

(16)

In (12)-(16),  and  indicate input and hidden state vectors, respectively;  denotes the input gate 
at timestep t;  is the forget gate at timestep t;  is the output gate at timestep t;  represents the 
cell state at timestep t; and W and b with different subscriptions are the weight matrix and bias vector. 
Given that the LSTM network is suitable to handle sequential data, we employ the LSTM to process the 
dynamic pageview patterns in the model.

<Figure D1> Single LSTM Cell and BiLSTM Architecture Example
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<Appendix D> LSTM and BiLSTM Network Architecture (Cont.)

To overcome the limitations of LSTM network that outputs of LSTM learn based previous timesteps 
but cannot learn future ones. LSTM network was modified into Bi-directional LSTM (BiLSTM) by combining 
forward and backward LSTM networks (Graves and Schmidhuber, 2005; Schuster and Paliwal, 1997). Based 
on LSTM network, BiLSTM network employs both previous and future context in output layer. For example, 
an input sequence  in BiLSTM is processed in forward direction, = ( , , ..., ) and 
then in backward directions, = , , ..., . The output  is obtained by both  and . <Figure D1> 
displays the single cell of LSTM and BiLSTM architecture.
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