• 제목/요약/키워드: deep learning structure

검색결과 469건 처리시간 0.027초

배합인자를 고려한 딥러닝 알고리즘 기반 탄산화 진행 예측에 관한 기초적 연구 (A Fundamental Study on the Prediction of Carbonation Progress Using Deep Learning Algorithm Considering Mixing Factors)

  • 정도현;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.30-31
    • /
    • 2019
  • Carbonation of the root concrete reduces the durability of the reinforced concrete, and it is important to check the carbonation resistance of the concrete to ensure the durability of the reinforced concrete structure. In this study, a basic study on the prediction of carbonation progress was conducted by considering the mixing conditions of concrete using deep learning algorithm during the theory of artificial neural network theory. The data used in the experiment used values that converted the carbonation velocity coefficient obtained from the mixing conditions of concrete and the accelerated carbonation experiment into the actual environment. The analysis shows that the error rate of the deep learning model according to the Hidden Layer is the best for the model using five layers, and based on the five Hidden layers, we want to verify the predicted performance of the carbonation speed coefficient of the carbonation test specimen in which the exposure experiment took place in the real environment.

  • PDF

Deep Learning and Color Histogram based Fire and Smoke Detection Research

  • Lee, Yeunghak;Shim, Jaechang
    • International journal of advanced smart convergence
    • /
    • 제8권2호
    • /
    • pp.116-125
    • /
    • 2019
  • The fire should extinguish as soon as possible because it causes economic loss and loses precious life. In this study, we propose a new atypical fire and smoke detection algorithm using deep learning and color histogram of fire and smoke. First, input frame images obtain from the ONVIF surveillance camera mounted in factory search motion candidate frame by motion detection algorithm and mean square error (MSE). Second deep learning (Faster R-CNN) is used to extract the fire and smoke candidate area of motion frame. Third, we apply a novel algorithm to detect the fire and smoke using color histogram algorithm with local area motion, similarity, and MSE. In this study, we developed a novel fire and smoke detection algorithm applied the local motion and color histogram method. Experimental results show that the surveillance camera with the proposed algorithm showed good fire and smoke detection results with very few false positives.

딥러닝을 활용한 BIM 객체정보기반의 벽마감 구조틀 부재 수량 예측모델에 관한 연구 (A Study on the Prediction Model of the Total Quantity of the Wall Finishing Structure Member Based on BIM Object Information Using Deep Learning)

  • 박도윤;윤석헌
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.123-124
    • /
    • 2022
  • The work of modeling and calculating the quantity of detailed parts requires a lot of time and effort. However, The information of BIM Model can be used to predict the amount of uncreated parts with Deep Learning. In this study, Deep Learning was used to predict the total length of the member of frame that was not created. As a result, it was confirmed that the error rate was inside or outside 3%. And predicting other components in this way will increase productivity in Architectural field.

  • PDF

A fast and simplified crack width quantification method via deep Q learning

  • Xiong Peng;Kun Zhou;Bingxu Duan;Xingu Zhong;Chao Zhao;Tianyu Zhang
    • Smart Structures and Systems
    • /
    • 제32권4호
    • /
    • pp.219-233
    • /
    • 2023
  • Crack width is an important indicator to evaluate the health condition of the concrete structure. The crack width is measured by manual using crack width gauge commonly, which is time-consuming and laborious. In this paper, we have proposed a fast and simplified crack width quantification method via deep Q learning and geometric calculation. Firstly, the crack edge is extracted by using U-Net network and edge detection operator. Then, the intelligent decision of is made by the deep Q learning model. Further, the geometric calculation method based on endpoint and curvature extreme point detection is proposed. Finally, a case study is carried out to demonstrate the effectiveness of the proposed method, achieving high precision in the real crack width quantification.

Ensemble convolutional neural networks for automatic fusion recognition of multi-platform radar emitters

  • Zhou, Zhiwen;Huang, Gaoming;Wang, Xuebao
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.750-759
    • /
    • 2019
  • Presently, the extraction of hand-crafted features is still the dominant method in radar emitter recognition. To solve the complicated problems of selection and updation of empirical features, we present a novel automatic feature extraction structure based on deep learning. In particular, a convolutional neural network (CNN) is adopted to extract high-level abstract representations from the time-frequency images of emitter signals. Thus, the redundant process of designing discriminative features can be avoided. Furthermore, to address the performance degradation of a single platform, we propose the construction of an ensemble learning-based architecture for multi-platform fusion recognition. Experimental results indicate that the proposed algorithms are feasible and effective, and they outperform other typical feature extraction and fusion recognition methods in terms of accuracy. Moreover, the proposed structure could be extended to other prevalent ensemble learning alternatives.

A Hierarchical deep model for food classification from photographs

  • Yang, Heekyung;Kang, Sungyong;Park, Chanung;Lee, JeongWook;Yu, Kyungmin;Min, Kyungha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권4호
    • /
    • pp.1704-1720
    • /
    • 2020
  • Recognizing food from photographs presents many applications for machine learning, computer vision and dietetics, etc. Recent progress of deep learning techniques accelerates the recognition of food in a great scale. We build a hierarchical structure composed of deep CNN to recognize and classify food from photographs. We build a dataset for Korean food of 18 classes, which are further categorized in 4 major classes. Our hierarchical recognizer classifies foods into four major classes in the first step. Each food in the major classes is further classified into the exact class in the second step. We employ DenseNet structure for the baseline of our recognizer. The hierarchical structure provides higher accuracy and F1 score than those from the single-structured recognizer.

Could Decimal-binary Vector be a Representative of DNA Sequence for Classification?

  • Sanjaya, Prima;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • 제5권3호
    • /
    • pp.8-15
    • /
    • 2016
  • In recent years, one of deep learning models called Deep Belief Network (DBN) which formed by stacking restricted Boltzman machine in a greedy fashion has beed widely used for classification and recognition. With an ability to extracting features of high-level abstraction and deal with higher dimensional data structure, this model has ouperformed outstanding result on image and speech recognition. In this research, we assess the applicability of deep learning in dna classification level. Since the training phase of DBN is costly expensive, specially if deals with DNA sequence with thousand of variables, we introduce a new encoding method, using decimal-binary vector to represent the sequence as input to the model, thereafter compare with one-hot-vector encoding in two datasets. We evaluated our proposed model with different contrastive algorithms which achieved significant improvement for the training speed with comparable classification result. This result has shown a potential of using decimal-binary vector on DBN for DNA sequence to solve other sequence problem in bioinformatics.

Crack growth prediction on a concrete structure using deep ConvLSTM

  • Man-Sung Kang;Yun-Kyu An
    • Smart Structures and Systems
    • /
    • 제33권4호
    • /
    • pp.301-311
    • /
    • 2024
  • This paper proposes a deep convolutional long short-term memory (ConvLSTM)-based crack growth prediction technique for predictive maintenance of structures. Since cracks are one of the critical damage types in a structure, their regular inspection has been mandatory for structural safety and serviceability. To effectively establish the structural maintenance plan using the inspection results, crack propagation or growth prediction is essential. However, conventional crack prediction techniques based on mathematical models are not typically suitable for tracking complex nonlinear crack propagation mechanism on civil structures under harsh environmental conditions. To address the technical issue, a field data-driven crack growth prediction technique using ConvLSTM is newly proposed in this study. The proposed technique consists of the four steps: (1) time-series crack image acquisition, (2) target image stabilization, (3) deep learning-based crack detection and quantification and (4) crack growth prediction. The performance of the proposed technique is experimentally validated using a concrete mock-up specimen by applying step-wise bending loads to generate crack growth. The validation test results reveal the prediction accuracy of 94% on average compared with the ground truth obtained by field measurement.

향상된 초기화 구조를 이용한 측면주사소나 영상 초해상도 영상복원 (Side scan sonar image super-resolution using an improved initialization structure)

  • 이준엽;구본화;김완진;고한석
    • 한국음향학회지
    • /
    • 제40권2호
    • /
    • pp.121-129
    • /
    • 2021
  • 본 논문에서는 학습 기반 압축 센싱을 이용하여 측면 주사 소나 영상의 해상도를 향상하는 초해상도 기법을 다룬다. 딥러닝과 압축 센싱이 접목된 학습 기반 압축 센싱은 구조적인 측면에서 피드-포워드(feed forward) 네트워크 형태이며 학습을 통하여 파라미터들을 자동으로 설정하게 된다. 본 논문에서는 초해상도 과정에서 필요한 추가 정보들을 다양한 초기화 방법을 통해 효과적으로 추출할 수 있는 방법을 제안한다. 다양한 모의 실험에서 제안하는 방법은 기존 방식보다 Peak Signal-to-Noise Ratio(PSNR) 및 Structure Similarity Index Measure(SSIM) 지표상 향상된 성능 결과를 나타내었다.

깊은신경망을 이용한 회전객체 분류 연구 (A Study on Rotating Object Classification using Deep Neural Networks)

  • 이용규;이일병
    • 한국지능시스템학회논문지
    • /
    • 제25권5호
    • /
    • pp.425-430
    • /
    • 2015
  • 본 논문은 딥러닝 알고리즘을 적용한 깊은신경망을 이용하여 회전 객체의 분류 효율성을 높이기 위한 연구이다. 회전객체의 분류 실험을 위하여 데이터는 COIL-20을 사용하며 객체의 2/3영역을 학습시키고 1/3영역을 유추하여 분류한다. 연구에 이용된 3가지 분류기는 주성분 분석법을 이용해 데이터의 차원을 축소하면서 특징값을 추출하고 유클리디안 거리를 이용하여 분류하는 PCA분류기와 오류역전파 알고리즘을 이용하여 오류 에너지를 줄여가는 방식의 MLP분류기, 마지막으로 pre-training을 통하여 학습데이터의 관찰될 확률을 높여주고 fine-tuning으로 오류에너지를 줄여가는 방식의 딥러닝을 적용한 DBN분류기이다. 깊은신경망의 구조별 오류율을 확인하기 위하여 은닉층의 개수와 은닉뉴런의 개수를 변경해가며 실험하고 실제로 가장 낮은 오류율을 나타내는 구조를 기술한다. 가장 낮은 오류율을 보였던 분류기는 DBN을 이용한 분류기이다. 은닉층을 2개 갖는 깊은신경망의 구조로 매개 변수들을 인식에 도움이 되는 곳으로 이동 시켜 높은 인식률을 보여줬다.