• Title/Summary/Keyword: deep learning encoder

Search Result 140, Processing Time 0.042 seconds

Structural health monitoring data anomaly detection by transformer enhanced densely connected neural networks

  • Jun, Li;Wupeng, Chen;Gao, Fan
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.613-626
    • /
    • 2022
  • Guaranteeing the quality and integrity of structural health monitoring (SHM) data is very important for an effective assessment of structural condition. However, sensory system may malfunction due to sensor fault or harsh operational environment, resulting in multiple types of data anomaly existing in the measured data. Efficiently and automatically identifying anomalies from the vast amounts of measured data is significant for assessing the structural conditions and early warning for structural failure in SHM. The major challenges of current automated data anomaly detection methods are the imbalance of dataset categories. In terms of the feature of actual anomalous data, this paper proposes a data anomaly detection method based on data-level and deep learning technique for SHM of civil engineering structures. The proposed method consists of a data balancing phase to prepare a comprehensive training dataset based on data-level technique, and an anomaly detection phase based on a sophisticatedly designed network. The advanced densely connected convolutional network (DenseNet) and Transformer encoder are embedded in the specific network to facilitate extraction of both detail and global features of response data, and to establish the mapping between the highest level of abstractive features and data anomaly class. Numerical studies on a steel frame model are conducted to evaluate the performance and noise immunity of using the proposed network for data anomaly detection. The applicability of the proposed method for data anomaly classification is validated with the measured data of a practical supertall structure. The proposed method presents a remarkable performance on data anomaly detection, which reaches a 95.7% overall accuracy with practical engineering structural monitoring data, which demonstrates the effectiveness of data balancing and the robust classification capability of the proposed network.

Analysis of Resident's Satisfaction and Its Determining Factors on Residential Environment: Using Zigbang's Apartment Review Bigdata and Deeplearning-based BERT Model (주거환경에 대한 거주민의 만족도와 영향요인 분석 - 직방 아파트 리뷰 빅데이터와 딥러닝 기반 BERT 모형을 활용하여 - )

  • Kweon, Junhyeon;Lee, Sugie
    • Journal of the Korean Regional Science Association
    • /
    • v.39 no.2
    • /
    • pp.47-61
    • /
    • 2023
  • Satisfaction on the residential environment is a major factor influencing the choice of residence and migration, and is directly related to the quality of life in the city. As online services of real estate increases, people's evaluation on the residential environment can be easily checked and it is possible to analyze their satisfaction and its determining factors based on their evaluation. This means that a larger amount of evaluation can be used more efficiently than previously used methods such as surveys. This study analyzed the residential environment reviews of about 30,000 apartment residents collected from 'Zigbang', an online real estate service in Seoul. The apartment review of Zigbang consists of an evaluation grade on a 5-point scale and the evaluation content directly described by the dweller. At first, this study labeled apartment reviews as positive and negative based on the scores of recommended reviews that include comprehensive evaluation about apartment. Next, to classify them automatically, developed a model by using Bidirectional Encoder Representations from Transformers(BERT), a deep learning-based natural language processing model. After that, by using SHapley Additive exPlanation(SHAP), extract word tokens that play an important role in the classification of reviews, to derive determining factors of the evaluation of the residential environment. Furthermore, by analyzing related keywords using Word2Vec, priority considerations for improving satisfaction on the residential environment were suggested. This study is meaningful that suggested a model that automatically classifies satisfaction on the residential environment into positive and negative by using apartment review big data and deep learning, which are qualitative evaluation data of residents, so that it's determining factors were derived. The result of analysis can be used as elementary data for improving the satisfaction on the residential environment, and can be used in the future evaluation of the residential environment near the apartment complex, and the design and evaluation of new complexes and infrastructure.

Mention Detection with Pointer Networks (포인터 네트워크를 이용한 멘션탐지)

  • Park, Cheoneum;Lee, Changki
    • Journal of KIISE
    • /
    • v.44 no.8
    • /
    • pp.774-781
    • /
    • 2017
  • Mention detection systems use nouns or noun phrases as a head and construct a chunk of text that defines any meaning, including a modifier. The term "mention detection" relates to the extraction of mentions in a document. In the mentions, a coreference resolution pertains to finding out if various mentions have the same meaning to each other. A pointer network is a model based on a recurrent neural network (RNN) encoder-decoder, and outputs a list of elements that correspond to input sequence. In this paper, we propose the use of mention detection using pointer networks. Our proposed model can solve the problem of overlapped mention detection, an issue that could not be solved by sequence labeling when applying the pointer network to the mention detection. As a result of this experiment, performance of the proposed mention detection model showed an F1 of 80.07%, a 7.65%p higher than rule-based mention detection; a co-reference resolution performance using this mention detection model showed a CoNLL F1 of 52.67% (mention boundary), and a CoNLL F1 of 60.11% (head boundary) that is high, 7.68%p, or 1.5%p more than coreference resolution using rule-based mention detection.

Mobile Finger Signature Verification Robust to Skilled Forgery (모바일환경에서 위조서명에 강건한 딥러닝 기반의 핑거서명검증 연구)

  • Nam, Seng-soo;Seo, Chang-ho;Choi, Dae-seon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.5
    • /
    • pp.1161-1170
    • /
    • 2016
  • In this paper, we provide an authentication technology for verifying dynamic signature made by finger on smart phone. In the proposed method, we are using the Auto-Encoder-based 1 class model in order to effectively distinguish skilled forgery signature. In addition to the basic dynamic signature characteristic information such as appearance and velocity of a signature, we use accelerometer value supported by most of the smartphone. Signed data is re-sampled to give the same length and is normalized to a constant size. We built a test set for evaluation and conducted experiment in three ways. As results of the experiment, the proposed acceleration sensor value and 1 class model shows 6.9% less EER than previous method.

Building Specialized Language Model for National R&D through Knowledge Transfer Based on Further Pre-training (추가 사전학습 기반 지식 전이를 통한 국가 R&D 전문 언어모델 구축)

  • Yu, Eunji;Seo, Sumin;Kim, Namgyu
    • Knowledge Management Research
    • /
    • v.22 no.3
    • /
    • pp.91-106
    • /
    • 2021
  • With the recent rapid development of deep learning technology, the demand for analyzing huge text documents in the national R&D field from various perspectives is rapidly increasing. In particular, interest in the application of a BERT(Bidirectional Encoder Representations from Transformers) language model that has pre-trained a large corpus is growing. However, the terminology used frequently in highly specialized fields such as national R&D are often not sufficiently learned in basic BERT. This is pointed out as a limitation of understanding documents in specialized fields through BERT. Therefore, this study proposes a method to build an R&D KoBERT language model that transfers national R&D field knowledge to basic BERT using further pre-training. In addition, in order to evaluate the performance of the proposed model, we performed classification analysis on about 116,000 R&D reports in the health care and information and communication fields. Experimental results showed that our proposed model showed higher performance in terms of accuracy compared to the pure KoBERT model.

Abnormal Flight Detection Technique of UAV based on U-Net (U-Net을 이용한 무인항공기 비정상 비행 탐지 기법 연구)

  • Myeong Jae Song;Eun Ju Choi;Byoung Soo Kim;Yong Ho Moon
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.41-47
    • /
    • 2024
  • Recently, as the practical application and commercialization of unmanned aerial vehicles (UAVs) is pursued, interest in ensuring the safety of the UAV is increasing. Because UAV accidents can result in property damage and loss of life, it is important to develop technology to prevent accidents. For this reason, a technique to detect the abnormal flight state of UAVs has been developed based on the AutoEncoder model. However, the existing detection technique is limited in terms of performance and real-time processing. In this paper, we propose a U-Net based abnormal flight detection technique. In the proposed technique, abnormal flight is detected based on the increasing rate of Mahalanobis distance for the reconstruction error obtained from the U-Net model. Through simulation experiments, it can be shown that the proposed detection technique has superior detection performance compared to the existing detection technique, and can operate in real-time in an on-board environment.

Coreference Resolution using Hierarchical Pointer Networks (계층적 포인터 네트워크를 이용한 상호참조해결)

  • Park, Cheoneum;Lee, Changki
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.9
    • /
    • pp.542-549
    • /
    • 2017
  • Sequence-to-sequence models and similar pointer networks suffer from performance degradation when an input is composed of multiple sentences or when the length of the input sentence is long. To solve this problem, this paper proposes a hierarchical pointer network model that uses both the word level and sentence level information to encode input sequences composed of several sentences at the word level and sentence level. We propose a hierarchical pointer network based coreference resolution that performs a coreference resolution for all mentions. The experimental results show that the proposed model has a precision of 87.07%, recall of 65.39% and CoNLL F1 74.61%, which is an improvement of 21.83% compared to an existing rule-based model.

Understanding recurrent neural network for texts using English-Korean corpora

  • Lee, Hagyeong;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.313-326
    • /
    • 2020
  • Deep Learning is the most important key to the development of Artificial Intelligence (AI). There are several distinguishable architectures of neural networks such as MLP, CNN, and RNN. Among them, we try to understand one of the main architectures called Recurrent Neural Network (RNN) that differs from other networks in handling sequential data, including time series and texts. As one of the main tasks recently in Natural Language Processing (NLP), we consider Neural Machine Translation (NMT) using RNNs. We also summarize fundamental structures of the recurrent networks, and some topics of representing natural words to reasonable numeric vectors. We organize topics to understand estimation procedures from representing input source sequences to predict target translated sequences. In addition, we apply multiple translation models with Gated Recurrent Unites (GRUs) in Keras on English-Korean sentences that contain about 26,000 pairwise sequences in total from two different corpora, colloquialism and news. We verified some crucial factors that influence the quality of training. We found that loss decreases with more recurrent dimensions and using bidirectional RNN in the encoder when dealing with short sequences. We also computed BLEU scores which are the main measures of the translation performance, and compared them with the score from Google Translate using the same test sentences. We sum up some difficulties when training a proper translation model as well as dealing with Korean language. The use of Keras in Python for overall tasks from processing raw texts to evaluating the translation model also allows us to include some useful functions and vocabulary libraries as well.

Explainable analysis of the Relationship between Hypertension with Gas leakages (설명 가능한 인공지능 기술을 활용한 가스누출과 고혈압의 연관 분석)

  • Dashdondov, Khongorzul;Jo, Kyuri;Kim, Mi-Hye
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.55-56
    • /
    • 2022
  • Hypertension is a severe health problem and increases the risk of other health issues, such as heart disease, heart attack, and stroke. In this research, we propose a machine learning-based prediction method for the risk of chronic hypertension. The proposed method consists of four main modules. In the first module, the linear interpolation method fills missing values of the integration of gas and meteorological datasets. In the second module, the OrdinalEncoder-based normalization is followed by the Decision tree algorithm to select important features. The prediction analysis module builds three models based on k-Nearest Neighbors, Decision Tree, and Random Forest to predict hypertension levels. Finally, the features used in the prediction model are explained by the DeepSHAP approach. The proposed method is evaluated by integrating the Korean meteorological agency dataset, natural gas leakage dataset, and Korean National Health and Nutrition Examination Survey dataset. The experimental results showed important global features for the hypertension of the entire population and local components for particular patients. Based on the local explanation results for a randomly selected 65-year-old male, the effect of hypertension increased from 0.694 to 1.249 when age increased by 0.37 and gas loss increased by 0.17. Therefore, it is concluded that gas loss is the cause of high blood pressure.

Denoising Diffusion Null-space Model and Colorization based Image Compression

  • Indra Imanuel;Dae-Ki Kang;Suk-Ho Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.22-30
    • /
    • 2024
  • Image compression-decompression methods have become increasingly crucial in modern times, facilitating the transfer of high-quality images while minimizing file size and internet traffic. Historically, early image compression relied on rudimentary codecs, aiming to compress and decompress data with minimal loss of image quality. Recently, a novel compression framework leveraging colorization techniques has emerged. These methods, originally developed for infusing grayscale images with color, have found application in image compression, leading to colorization-based coding. Within this framework, the encoder plays a crucial role in automatically extracting representative pixels-referred to as color seeds-and transmitting them to the decoder. The decoder, utilizing colorization methods, reconstructs color information for the remaining pixels based on the transmitted data. In this paper, we propose a novel approach to image compression, wherein we decompose the compression task into grayscale image compression and colorization tasks. Unlike conventional colorization-based coding, our method focuses on the colorization process rather than the extraction of color seeds. Moreover, we employ the Denoising Diffusion Null-Space Model (DDNM) for colorization, ensuring high-quality color restoration and contributing to superior compression rates. Experimental results demonstrate that our method achieves higher-quality decompressed images compared to standard JPEG and JPEG2000 compression schemes, particularly in high compression rate scenarios.