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Abstract
Deep Learning is the most important key to the development of Artificial Intelligence (AI). There are several

distinguishable architectures of neural networks such as MLP, CNN, and RNN. Among them, we try to under-
stand one of the main architectures called Recurrent Neural Network (RNN) that differs from other networks in
handling sequential data, including time series and texts. As one of the main tasks recently in Natural Language
Processing (NLP), we consider Neural Machine Translation (NMT) using RNNs. We also summarize funda-
mental structures of the recurrent networks, and some topics of representing natural words to reasonable numeric
vectors. We organize topics to understand estimation procedures from representing input source sequences to pre-
dict target translated sequences. In addition, we apply multiple translation models with Gated Recurrent Unites
(GRUs) in Keras on English-Korean sentences that contain about 26,000 pairwise sequences in total from two
different corpora, colloquialism and news. We verified some crucial factors that influence the quality of training.
We found that loss decreases with more recurrent dimensions and using bidirectional RNN in the encoder when
dealing with short sequences. We also computed BLEU scores which are the main measures of the translation
performance, and compared them with the score from Google Translate using the same test sentences. We sum
up some difficulties when training a proper translation model as well as dealing with Korean language. The use
of Keras in Python for overall tasks from processing raw texts to evaluating the translation model also allows us
to include some useful functions and vocabulary libraries as well.
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1. Introduction

As a main functional part of artificial intelligence (AI), deep learning enables the computer to capture
significant information from numerous data. Research in both supervised and unsupervised learnings
are currently underway to obtain a high-level of computer understanding that is equal to human ca-
pabilities in fields such as computer vision, natural language processing, and speech recognition. The
main objectives of the studies are to represent informal data as reasonable vectors that computers can
process and to build a network with efficient architecture. There are several main structures leading
the current technology. For example, CNN is the leading architecture of most computer vision tasks
including image recognition and feature extraction.

Typical networks such as MLP and CNN take input features all at once, independently. Suppose
there is a sequential data with observations made with a series of points or subsequences. We may
input all timesteps at once to those networks; therefore, there is no shared information of the order
between input points even though the earlier one might have an effect on the later one. Once the
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Figure 1: A recurrent structure.

layer accepts the inputs, their activation values are passed to the next layer and do not go back called
feed-forward networks.

However, recurrent neural network (RNN) is designed for processing sequential values effectively.
Jordan (1986) first introduced the concept of recurrence. The network accepts one element (single
vector) of a sequence at a time, and iterate the same computation along the elements of the entire
sequence. This repetitive state is called a Cell in a recurrent layer between input and output nodes
because it acts like a memory cell. Classification or sequential prediction using time-series data, texts,
and speech are main tasks where RNN can show an outstanding performance.

In this paper, we summarize overall mechanisms of recurrent networks and their main usage in
Sequence-to-Sequence networks. There exist a lot of applications in sequence prediction that RNN can
be applied to such as time-series prediction and speech recognition. Among them, we especially pay
attention to machine translation, which is one of the main text prediction problem that has successfully
developed with RNN. Neural networks based on machine translation have recently been developed.
For example, Wu et al. (2016) introduced a neural machine translation (NMT) translation system for
Google that represented an update over the previous statistical methods (SMT).

The remaining of the paper is organized as follows. In Section 2, we will explore the main concepts
that can build a NMT. We first explain three main recurrent architectures from the simplest one to
advanced ones, and then summarize some techniques to represent texts as vectors that the network
can accept. We describe a Sequence-to-Sequence network with source texts as inputs and target texts
as outputs at the end of the section. In Section 3, we discuss the results of applying several translation
models to two real English-Korean corpora, provided by AI hub of NIA (http://www.aihub.or.kr/).
Section 4 provides concluding remarks.

2. Concepts in neural machine translation with recurrent neural network

2.1. Recurrent neural network

At each time t in a recurrent layer, the cell computes an output based on both the input and the previous
‘hidden state’ values through several transformation using weights and activation. It passes the current
output as an updated hidden state to next time t + 1, and reuse it as an optional input. For example,
Figure 1 shows the structure of the simplest RNN in five different time points. The left part of the
figure represents the recurrent property, and the right part is a sequential description of the recurrent
procedure for each time point t = 1, . . . , 5 in a cell. Each input data point at time t is denoted as xt, and
each newly computed state is ht. The cell produces outputs ht out of the layer as well as passes them to
the next time point of the cell. It uses shared set of parameters to compute each output at time t. If we
want to maintain the dimension of time, we may pass all states h1, . . . , h5 to the next layer. Otherwise,
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Table 1: Vectors at each time t in a recurrent cell

Architecture Variable Meaning Shape
xt An input feature vector at time t (batch size, p)
ht A (hidden) state vector at time t (batch size, q)
it An input gate vector at time t

(batch size, q)LSTM ft A forget gate vector at time t

(optional) ot An output gate vector at time t
Ct A Cell state vector at time t
C̃t A candidate vector for Cell state at time t

GRU zt An update gate vector at time t
(batch size, q)(optional) rt A reset gate vector at time t

h̃t A candidate vector for hidden state at time t

LSTM = long short-term memory; GRU = gated recurrent units.

we may pass only the last state h5 because it is expected to involve the accumulated information from
the beginning.

We can generally express the recurrent structure in a numerical form as follows where ht is a
function of xt and ht−1.

ht = f (xt, ht−1).

RNN can vary according to the internal function f . From the most basic form, ‘SimpleRNN’,
many variants have been introduced to redeem its accuracy and training efficiency. Here we list some
most famous developments.

Long short-term memory (LSTM) was designed to prevent the vanishing gradient problem of
simple RNN by Hochreiter and Schmidhuber (1997). It has an additional memorable cell state and
adjusting inputs and outputs by three gates. Because the architecture turned out to learn high-level
sensitive contexts of language, it has been the best recurrent architecture widely used in processing text
and speech such as machine translation, speech recognition, and text generation. Even if the training
would be slow due to complexity, there are few remarkable variants that significantly outperform
standard LSTM’s accuracy (Greff et al., 2015).

Gated recurrent units (GRU) was introduced in 2014 as another gated algorithm by Cho et al.
(2014) It is the most popular one in many applications as a substitute of LSTM, because it reduces the
complexity of LSTM and maintains a similar performance.

In this section, we compare the internal procedures of the three architectures using mathematical
formulas. Table 1 describes all the notations of the inputs and internal outputs. Note that p is the
number of input features and q is the number of latent units in a recurrent layer.

2.1.1. SimpleRNN (Vanilla RNN)

Suppose the number of timesteps in a sequence is T and the batch size is 1. For t = 1, . . . ,T , the
simplest (vanilla) RNN inputs xt and ht−1 and compute ht with activation. In the following descrip-
tions, Wxh denotes a weight matrix which is multiplied with x to generate h and Whh is the one from
previous h to current h. Please note that the dimension of state ht is (1, q) ignores the time dimension
here. Therefore, the parameter set in a vanilla RNN cell contains p × q + q × q weights and q biases.

ht
(1,q)
= tanh

(
xt

(1,p)
·Wxh

(p,q)
+ ht−1

(1,q)
·Whh

(q,q)
+ bh

(1,q)

)
.

As the length of the sequence gets longer, training vanilla RNN becomes harder because of the
vanishing gradients.
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2.1.2. Long short-term memory

The most remarkable development of LSTM from vanilla RNN is that it divides the state into two
states and differentiates ‘cell state’ C from the original hidden state h. C is expected to store long-term
information, while h is expected to have short-term information. Besides, it contains three ‘gates’
which have values between 0 and 1 by sigmoid activation and controls the memorable amount of both
states’ information. Following descriptions of f (forget gate), i (input gate) and o (output gate) imply
how three gates produced in a LSTM cell at time t.

ft = sigmoid(xt ·Wx f + ht−1 ·Wh f + b f ),
it = sigmoid(xt ·Wxi + ht−1 ·Whi + bi),

ot
(1,q)
= sigmoid(xt ·Wxo

(p,q)
+ ht−1 ·Who

(q,q)
+ bo

(1,q)
),

C̃t = tanh(xt ·Wxc + ht−1 ·Whc + bc).

At the same time, the cell also compute a candidate of the current cell state, C̃t, in a similar way
as the vanilla RNN computes ht. Then as the name suggests, the forget gate is multiplied with the
existing cells state and adjusts the amount. The input gate is in charge of adjusting the new candidate.
The true cell state at time t is a linear combination of both. Finally, the cell produces another state ht

from Ct and adjusts values with the output gate. Since all gates and states are vectors of length q, ∗
denotes element-wise multiplication.

Ct = ft ∗Ct−1 + it ∗ C̃t,

ht = ot ∗ tanh(Ct).

Because of the parameters in three gates, the LSTM cell has four times as many parameters as the
vanilla RNN and therefore training them takes a longer time. It suffers from vanishing gradients less
and successfully handles long sequences. However, we found it difficult to clarify how each part in
the LSTM cell plays a role that matches their name.

2.1.3. Gated recurrent units

zt = sigmoid (xt ·Wxz + ht−1 ·Whz + bz) ,
rt = sigmoid (xt ·Wxr + ht−1 ·Whr + br) ,

h̃t = tanh (xt ·Wxh + (rt ∗ ht−1) ·Whh + bh) ,

ht = zt ∗ ht−1 + (1 − zt) ∗ h̃t.

GRU has one update gate z instead of the forget and input gate in LSTM. Moreover, it has a reset
gate r to control the existing memory. It also generates one hidden state from its candidate and the
previous one. While architecture looks simpler than LSTM, several empirical results such as Chung et
al. (2014) and Jozefowicz et al. (2015) have shown that it could have great performances to compete
with LSTM. In Figure 2, we described both architectures inside a single cell at time t from inputs to
outputs. You can expect that GRU cell makes fewer outputs with simpler operations than LSTM.

Sometimes a sequential data does not have an order in one direction. For example, the appearance
of a sequence of words tends to be more crucial than their order in a sentence. A bidirectional RNN
is expected to learn more complex contexts using an input sequences in both directions - from the
beginning to the end (vise versa).
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Figure 2: Descriptions of the architectures: LSTM and GRU. LSTM = long short-term memory; GRU = gated
recurrent units.

2.2. Text representation

Texts is a series of sentences or a single sentence consisting of several words. Suppose that we have
a large collection of texts for the purpose of studying NLP tasks, we call it as a Corpus. Using fixed
units of words or sentences in our corpus as an input sequence, we could expect a network to learn
contexts from an observed text as CNN learns features from an input image. Then, we could use the
learned contexts for our objectives about texts such as classification or language modeling. We need
to convert raw words to numeric vectors as appropriate as possible since neural networks only accept
numerical input values. Here the ‘appropriate’ means that a word vector implies reasonable values in
relation to other words. We summarize two core techniques in terms of representing texts for the most
fundamental part of NLP.

2.2.1. Tokenization

A word is mostly considered as the most basic unit of meaning. In general, however, we need to split
a sentence with several pieces so that each piece (called a token) becomes a meaningful unit.

We should first determine the unit of token in order to tokenize texts. It can be a character, word,
or sentence. Keras provides ‘tokenizer’ as one of functions for preprocessing texts, and quickly tok-
enizes a sentence based on spaces after removing punctuation. We can also use word-level tokenizing
functions for English texts from natural language toolkit (NLTK) libraries. It provides a suite of text
processing libraries written in Python. However, it might not be a suitable method if we tokenize Ko-
rean texts because Korean words consists of various postpositions. So we need to split into smaller
units. We use Morpheme as token in Korean because it is the smallest unit with meaning. Users can
use several morpheme-level tokenizers in the Konlpy package in Python.

2.2.2. Token Embedding

After tokenizing sentences, we temporarily give each token a different number as an index. Each
integer value corresponds with a unique token but the size of the number is not meaningful. We
consider one-hot encoding for mapping categorical integers with vectors since the tokens are non-
continuous. If there exists N unique tokens in the entire dataset, we allocate each token a vector of
length N which contains N − 1 zeros. It becomes sparse and high-dimensional more and more as the
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dataset are larger, resulting in exhausting spatial resources. Also, it cannot represent any relationship
or distance between two tokens.

Embedding allocates a token to a dense vector with floating-point values. In contrast to one-hot
encoding, we set a desired length p of an embedding vector and its p elements are trained by a neural
network using several input tokens for each training step. It is a method that representing tokens in
a p-dimensional space as similar words locate as close as possible. Many researchers have focused
on embedding methods. For example, Mikolov et al. (2013) from Google proposed Word2Vec, an
efficient architecture to learn high-quality word vectors regarding that each token as a word. It is
based on a simple network with just one hidden projection layer between input and output layer. They
trained their networks using the most frequent 1 million words in Google News corpus and verified
the qualities of trained vectors by representing word similarities. Other architectures such as GloVe
from Stanford (Pennington et al. 2014), and fastText from Facebook (Bojanowski et al. 2016) have
followed. Some of them provide pre-trained embedding vectors trained with large corpus on certain
languages. These vectors were trained to maximize the probability for the adjacent appearance of
words. Therefore, trained vectors can have completely different values depending on the sentences in
the training set (corpus-specific).

We can use an ‘Embedding’ layer in Keras, as the first layer in our model in order to switch each
integer-valued input to a fixed length vector. Similar to other kinds of layers, the network sets random
initial values to all vectors in the beginning of the training. Those values are then optimized in the
direction of decreasing the loss, with all other parameters in our model. We can initialize the vectors
with well-trained embeddings instead of random values if our dataset is not large, as if we use pre-
trained filters from a large convolutional network for our own image classification task. It is because
we expect the embedding vectors to have reasonable values, even though we do not have enough data
to learn the values for ourselves (Chollet, 2017).

For example, we consider an English sentence in our corpus and tokenized it to T1 tokens, [X1, X2,
. . . , XT1 ]. Now the dimension of the sequence is (1,T1). Then after it passes through the embedding
layer, each token is converted to an embedding vector of length p1 and the dimension of output be-
comes (1,T1, p1). If we consider a few sentences for a mini-batch, the dimension of the array implies
(batch size, num timesteps, embedding dim). The detailed expression follows in Section 2.3.

2.3. Sequence-to-Sequence Network

Applying all the concepts mentioned above, we finally design a model that predicts a target sentence
given a source sentence. It is actively used nowadays in areas such as translation and chatbot devel-
opment. We can build a sequence-to-sequence network with two RNNs as an encoder and a decoder.
The architecture was first introduced by Cho et al. (2014) with the development of GRU.

Suppose we just finished tokenizing each set of sentences before building an RNN encoder and
decoder cells. We enclose the beginning and end of each sequence with < sos > and < eos >, which
means ‘start’ and ‘end of sentence’. After allocating integers to those tokens, there exists N1 unique
tokens in the source vocabulary and N2 in the target’s. Each integer sequence has its own length (the
lengths of sentences are different); therefore, we need to make the length of all sequences equal same
to the maximum length in each set by padding shorter ones’ back with zeros. We now have source
sequences [X1, X2, . . . , XT1 ] and target sequences [< sos >,Y1,Y2, . . . ,YT2 , < eos >]. We define both
embedding layers mapping N1 source integers with length p1 vectors, and N2 target integers with
length p2 vectors.
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Figure 3: Training sequence-to-sequence network with two RNNs.

2.3.1. Training

Figure 3 shows both overall and detailed description of training a seq2seq network. We can simplify
the entire procedure using three steps as follows.

(1) The encoder accepts an input source sequence and computes state values.

(2) The encoder passes final state vector as the initial state of the decoder.

(3) From the starting symbol, the decoder sequentially predict the most probable target token that
comes to the next.

First, the encoder accepts ith token Xi’s embedding vector and computes state values hi until the
end point of the source sequence. If we define the number of units in the recurrent cell as q, the length
of states are q. Then, it passes the last hidden state hT1 as the initial state of the decoder RNN. hT1 is
called ‘contexts’ learned from source sequences.

The decoder accepts an embedding vector of the first input token < sos > from the target sequence.
Given the initial state and the input, the decoder computes a state vector s1 with length q. It enters a
fully-connected layer with N2 units. Finally, we can compute the probabilities with softmax activation.
It means which token is most likely to appear next among all possible target tokens. Each time while
training, the decoder accepts each jth true token Y j’s embedding vector in a target sequence and
maximizes the probability of the next true target token Y j+1 for the following timesteps j = 1, . . . , T2.
Note that the final output token is < eos >. In summary, the model is trained to maximize each
target sequence [Y1,Y2, . . . ,YT2 , < eos >]’s probability using both [X1, X2, . . . , XT1 ] and [< sos >,
Y1,Y2, . . . , YT2 ] for the encoder and decoder input. We can summarize the architecture of the model
in Table 2 with all predetermined dimensions. All model parameters are optimized to maximize a
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Table 2: Summary of a sequence-to-sequence network

Source Target
Vocabulary size N1 N2
Length of a sequence (number of timesteps) T1 T2
Embedding dimension of each token p1 p2

Layer(options) Output shape Number of parameters

Encoder
Input (None, None) -
Embedding(input dim = N1, output dim = p1) (None, None, p1) N1 × p1
GRU(units = q, return state = True) [(None, q), (None, q)] p1 × q + q × q + q

Decoder

Input (None, None) -
Embedding(input dim = N2, output dim = p2) (None, None, p2) N2 × p2
GRU(units = q, return sequences = True) (None, None, q) p2 × q + q × q + q
Dense(units = N2, activation = ‘softmax’) (None, None, N2) q × N2 + N2

conditional probability of the target sequence given the source sequence. The loss function of the
model is defined with categorical-crossentropy, using true token and predicted probability at each
timestep.

2.3.2. Prediction

When we predict an unobserved target sequence, the decoder works in a different way from training.
From the starting symbol < sos > with the initial state from the encoder, it predicts the probabilities
for all tokens and finds the token that matches the highest probability. Then the decoder uses it as the
input of the next timestep. It stops the prediction as the predicted token is < eos >.

2.3.3. Evaluation

In addition to the observed one which has been used for learning, there can be more than one possible
target sentence for a source sentence. Therefore, it is not easy to evaluate the quality of a translated
sentence. We can evaluate the translation performance of the model by intrinsic or extrinsic methods.
For the intrinsic evaluation, graders directly evaluate predicted sentences and score the quality of
them. Therefore, subjective judgements can be involved.

We use some extrinsic evaluation methods in general. For evaluating the prediction performance
of a language model that computes the joint probability for a sequence of n words w1, . . . ,wn, we
can use Perplexity (PPL). It is automatically computed by the model itself, which is equivalent to
exponential loss.

PPL(w1, . . . ,wn) = P(w1, . . . ,wn)−
1
n =

 n∏
i=1

1
P(wi|w1, . . . ,wi−1)


1
n

= exp

1
n

log

 n∏
i=1

1
P(wi|w1, . . . ,wi−1)


= exp

(
−1

n
log

( n∑
i=1

P(wi|w1, . . . ,wi−1)
)

︸                                    ︷︷                                    ︸
Loss

)
.

If the model is trained well with smaller loss, the perplexity tends to be lower. However, it is the
measure about the model rather than about translated sentences. Thus, it does not always imply the
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Table 3: Pre-determined dimensions of each corpus

Colloquialism News
Source Target Source Target

Vocabulary size 10,513 10,967 19,312 17,383
(Word2Vec) (9,456) (8,902) (12,308) (12,425)

(fastText) (9,833) (10,271) (15,207) (16,296)
Max length of a sequence 19 32 104 95

Table 4: An example input and target data format from a parallel colloquial sentence

English

Raw My dream is being the president of a bakery.
Tokenized [my, dream, is, being, the, president, of, a, restaurant, .]
Converted to integers [14, 261, 7, 226, 3, 939, 12, 6, 3051, 1]
Padded [14, 261, 7, 226, 3, 939, 12, 6, 3051, 1, 0, 0, . . . , 0] · · · (A)

Korean

Raw 내꿈은레스토랑사장이되는것이에요.
Tokenized [< sos >,내,꿈,은,레스토랑,사장,이,되,는,것,이,에요, ., < eos >]
Converted to integers [1, 61, 262, 12, 4101, 2716, 5, 24, 6, 21, 5, 22, 3, 2]
Padded [1, 61, 262, 12, 4101, 2716, 5, 24, 6, 21, 5, 22, 3, 2, 0, 0, . . . , 0] · · · (B)

sentence is translated well in human’s viewpoint. The perplexity only considers the probability of a
sentence.

For the evaluation of output sentence itself, bilingual evaluation understudy score (BLEU) (Pap-
ineni et al., 2002) has been commonly used for a translation quality. Given the source sentence, we
compare the model’s predicted sentence (candidate) with one or more target sentences (references)
from humans from 1-gram to n-gram (usually n = 4). By counting the number of concurrence among
total n-grams, BLEU numerically suggests the quality of the model’s output. The range of BLEU
score is between 0 and 1 and the higher value means better translation.

3. Case study: English-Korean corpora

In this section, we build several seq2seq translation models with two GRUs (encoder and decoder)
using English-Korean sentences. We obtained those sentences from the text corpora of AI Hub. We
focused our experiments on two datasets - (1) Colloquialism: informal style sentences, (2) News:
formal style sentences. We sampled 20,000 random sentences in the entire colloquialism corpus. In
news corpus, we used 6,165 sentences in total from six selected categories - economy, international,
society, sports, and IT science.

We first tokenized all English sentences into source sequences at word-level and Korean sentences
into target sequences at morpheme-level. In Table 3, vocabulary size is the number of unique tokens
in each corpus. The news corpus contains more unique words (or morphemes) than colloquialism.
In addition, the maximum length of the news sequence is longer than the colloquial sequence’s. We
padded all the sequences of each set to those maximum lengths.

In order to build a translation model, the final form of encoder input data is an integer sequence
of length 19 for each observation and each integer represents an English word. Similarly, a decoder
input data is an integer sequence of length 32 and each integer represents a Korean morpheme with
beginning and ending symbols. Table 4 describes an example of input data in our translation model
from an original pair of colloquial English-Korean sentences. The model first accepts (A) and the
encoder operates until the end of the sequence. Then the decoder uses each integer of (B) at a time, to
predict the next integer. Note that the actual target is the form of one-hot vector of each next integer,
which makes the model predict softmax probabilities for all integers in the entire target vocabulary.
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Figure 4: Results of test perplexity and BLEU on the colloquial sentences. BLEU = bilingual evaluation under-
study score

We varied our models in three ways.

A. The number of recurrent units in both the encoder and decoder; 256 or 512.

B. Bidirectional learning of the encoder GRU or not.

C. Initial values of Embedding vectors.

For word vectors, we first randomly initialized all vectors in both embedding layers with random
values. Moreover, we expected to get positive impacts by using pre-trained embedding vectors at the
initial step available from large networks. For example, we obtained 300-dimensional English word
vectors for 3 million words, pre-trained by Word2Vec on Google News dataset. For Korean Word2Vec,
we obtained Park’s 200-dimensional vectors (2016) pre-trained for 30,185 morphemes on Wikipedia
sentences. We also used fastText’s 300-dimensional pre-trained vectors (Grave et al., 2018) for both
English and Korean. We mapped the pre-trained vectors overlapping with our tokens and trained all
models keeping other options the same. We specified the number of tokens that have existing pre-
trained vectors by each embedding network in Table 3.

We finally trained 2×3×2 = 12 different models using the same training (80%), validation (10%)
and test (10%) set. We optimized every model to have the minimum validation loss and evaluated on
the test set with two extrinsic measures, PPL and BLEU. We computed 2-gram BLEU because our
colloquialism sentences were short in general. When training all our models, we used a single GPU
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Figure 5: Comparison of losses by initial embedding values.

on a system equipped with NVIDIA GeForce GTX 1080 Ti. It took about 52 seconds per epoch on
average to train the simplest model with 256 recurrent units. As we increased the model complex-
ity with more recurrent units or bidirectional learning, the maximum computing time for an epoch
reached about 2 minutes.

3.1. Colloquialism corpus

Figure 4 summarizes the result of performances on colloquial sentences. The PPL tends to decrease
by increasing recurrent units and applying bidirectional learning at the encoder, even if they make
a translation model more complex. Initial pre-trained embeddings also helped all models reach a
smaller loss and perplexity in the earlier step versus other random values. Model W4 showed the
smallest PPL with 512 recurrent units, using bidirectional encoder and initial Word2Vec embeddings.
Figure 5 compares three paths of losses by each initial embedding (R4, W4, F4), both on training and
validation set. However, the translation performances appeared slightly different. BLEU still tends to
improve as the model’s complexity increases; however, there is no clear difference between initial
embeddings. Considering the translation quality, we should select the fastText-based model F4 that
shows the best BLEU.

3.2. News corpus

We also represented the result on the news corpus in Figure 6. As the general length of the sequence
becomes longer, both performance measures of all of our models get worse. Word2Vec-based models
showed strikingly better PPL on the test set compared to other models. However, PPL tends to in-
crease with more recurrent units and a bidirectional encoder unlike the colloquial sentences. Training
recurrent networks would be more difficult as the input sequence length is longer. The best BLEU as
the measure of translation sentences appeared in model W2 which does not accord with the perplexity.

4. Conclusion

Deep Learning is gaining more attention in the fields of NLP. We examined how the recurrent net-
work handles sequential data in detail as well as the main concept to build an RNN-based transla-
tion model from processing raw input sentences to generating target sentences. We also make use
of such sequence-to-sequence structure on any parallel sequential data, such as question-answer or
speech-text. However, we need to apply more advanced techniques to improve the performance of the
seq2seq network to a fine level. Even though we built various models adjusting some basic structures,
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Figure 6: Results of test perplexity and BLEU on the news sentences. BLEU = bilingual evaluation understudy
score.

Attention (Bahdanau et al. 2015) has been widely used in advanced seq2seq networks. For example,
Google Neural Machine Translation (GNMT) (Wu et al., 2016) has developed with attention as well
as stacking eight LSTMs as the encoder and the decoder respectively and using a bidirectional RNN
for the first layer of the encoder. The network with attention connects the decoder with the encoder’s
state values at all time points, whereas the basic seq2seq network only accepts the last condensed
state values from the encoder. It is known as a technique that can handle even long sequences well. In
addition to our experiments, we also specified BLEU scores on the same test sentences using APIs of
Google Translate and Naver Papago, in Table 5 and Table 6. Even though our basic models show lower
performances compared to those state-of-the-art networks, we try to understand some crucial points
that could generally improve RNN-based seq2seq network performances based on our experiments.

When training with short sequences, more recurrent units in the network tend to improve the
perplexity and BLEU. Bi-directional encoder could learn better contexts by processing input source
sequences both from the front and the back and it improved the model. However, the results were dif-
ferent on the longer news sentences. It is because the recurrent network could suffer from a vanishing
gradient with long sequences in general and is not easy to be trained. Attention is a technique that can
handle long sequences. We also examined the effects of initial embedding values. Using pre-trained
embedding vectors from a large network as the initial values of our own model have a good influence
on the following learning process. It reduces both the training loss and optimal validation loss in a
faster time. Therefore, it is reasonable for users to use pre-trained embedding vectors if their dataset
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Table 5: Results of all performance measures on the colloquial sentences

Model q Bidirectional Initial PPL 2-Gram BLEU 4-Gram BLEU
Embeddings Train Test Train Test Train Test

R1 256 No random 2.82 5.15 18.67 17.10 7.46 6.40
R2 512 No random 2.77 4.93 24.83 20.02 12.40 8.76
R3 256 Yes random 2.52 4.90 23.53 19.02 11.07 7.74
R4 512 Yes random 2.52 4.83 29.99 20.79 16.28 8.83
W1 256 No Word2Vec 2.65 4.66 17.46 16.10 6.38 5.46
W2 512 No Word2Vec 2.25 4.41 22.70 19.53 10.51 7.90
W3 256 Yes Word2Vec 2.12 4.29 24.93 20.61 12.21 8.61
W4 512 Yes Word2Vec 2.22 4.21 29.26 20.39 16.93 8.37
F1 256 No fastText 2.66 4.81 18.80 16.79 7.50 6.27
F2 512 No fastText 2.26 4.62 22.17 18.38 10.60 7.38
F3 256 Yes fastText 2.48 4.49 27.81 19.92 14.84 8.38
F4 512 Yes fastText 2.13 4.37 30.67 21.92 16.81 9.47

Google 32.13 17.00
Naver 42.71 27.39

PPL = Perplexity; BLEU = bilingual evaluation understudy score.

Table 6: Results of all performance measures on the news sentences

Model q Bidirectional Initial PPL 2-Gram BLEU 4-Gram BLEU
Embeddings Train Test Train Test Train Test

R1 256 No random 4.78 10.90 5.37 5.22 1.59 1.50
R2 512 No random 5.10 11.32 6.37 5.30 2.15 1.68
R3 256 Yes random 4.56 11.31 10.08 7.18 3.86 2.46
R4 512 Yes random 5.91 11.91 9.44 8.81 3.66 3.34
W1 256 No Word2Vec 3.91 8.83 9.12 8.82 3.44 3.24
W2 512 No Word2Vec 3.52 8.73 9.40 9.51 3.72 3.67
W3 256 Yes Word2Vec 3.42 8.58 9.59 9.36 3.77 3.59
W4 512 Yes Word2Vec 2.79 8.65 7.80 7.53 2.65 2.47
F1 256 No fastText 4.23 10.03 7.60 6.73 2.44 2.05
F2 512 No fastText 4.60 10.21 6.93 7.05 2.21 2.24
F3 256 Yes fastText 3.50 9.95 13.18 9.00 5.79 3.42
F4 512 Yes fastText 3.39 10.00 8.96 8.91 3.12 3.17

Google 36.84 19.61
Naver 53.05 40.00

PPL = Perplexity; BLEU = bilingual evaluation understudy score.

is small.
We found that BLEU scores do not always correspond to measures used in the translation model.

It is because the neural translation model only optimize the loss (objective function) related to the
probability of observed sentences that differ from the measure of the translation quality. Moreover,
we summarize some difficulties in processing natural Korean languages. Korean has many postposi-
tions and affixes that can easily skipped while maintaining the meaning of the sentence; in addition,
unlike English, a sentence has diverse forms depending on the listener. Note that the scores of Google
and Naver on colloquial sentences are smaller compared to the scores on the news sentences despite
smaller lengths. The reason is that the Korean colloquial sentences in our dataset have different end-
ings including both honorifics and familiar forms, while the news sentences do not. Furthermore,
there can exist many possible sentences in Korean that imply the same idea because they are not sig-
nificantly affected by spaces or the order of words. Therefore, it takes special effort to bring Korean
sentences into a refined and consistent state in order to use in a network.

We believe that translation between Korean and English is still in the developing stages of over-
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coming difficulties and there must be special efforts to reach a remarkable level of translation.
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