• Title/Summary/Keyword: deep geological disposal

Search Result 131, Processing Time 0.032 seconds

A Coupled Hydro-Mechanical Analysis of a Deep Geological Repository to Assess Importance of Mechanical Factors of Bentonite Buffer (심층 처분 시설의 수리 역학적 해석을 통한 벤토나이트 버퍼의 역학적 영향 인자 중요도 평가)

  • Jeon, Yoon-Soo;Lee, Seung-Rae;Kim, Min-Seop;Jeon, Jun-Seo;Kim, Min-Jun
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.439-455
    • /
    • 2019
  • A buffer is the major component of a high level radioactive waste repository. Due to their thermal conductivity and low permeability, bentonites have been considered as a key component of a buffer system in most countries. The deep geological condition generates ground water inflow and results in swelling pressure in the buffer and backfill. Investigation of swelling pressure of bentonite buffer is an important task for the safe disposal system. The swelling pressure that can be critical is affected by mechanical and hydro properties of the system. Therefore, in this study, a sensitivity analysis was conducted to examine the effect of hydro-mechanical (HM) behaviors in the MX-80 bentonite. Based on the results of the swelling pressure generation with HM model parameters, a coupled HM analysis of an unsaturated buffer and backfill in a deep geological repository was also carried out to investigate the major factor of the swelling pressure generation.

Introduction of International Cooperation Project, DECOVALEX from 2008 to 2019 (2008년부터 2019년까지 수행된 국제공동연구 DECOVALEX 소개)

  • Lee, Changsoo;Kim, Taehyeon;Lee, Jaewon;Park, Jung-Wook;Kwon, Seha;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.271-305
    • /
    • 2020
  • An effect of coupled thermo-hydro-mechanical and chemical (THMC) behavior is an essential part of the performance and safety assessment of geological disposal systems for high-level radioactive waste and spent nuclear fuel. Furthermore, numerical models and modeling techniques are necessary to analyze and predict the coupled THMC behavior in the disposal systems. However, phenomena associated with the coupled THMC behavior are nonlinear, and the constitutive relationships between them are not well known. Therefore, it is challenging to develop numerical models and modeling techniques to analyze and predict the coupled THMC behavior in the geological disposal systems. It is also difficult to verify and validate the development of the models and techniques because it requires expensive laboratory tests and in-situ experiments that need to be performed for a long time. DECOVALEX was initiated in 1992 to efficiently develop numerical models and modeling techniques and validate the developed models and techniques against the lab and in-situ experiments. In Korea, Korea Atomic Energy Research Institute has participated in DECOVALEX-2011, DECOVALEX-2015, and DECOVALEX-2019 since 2008. In this study, all tasks in the three DECOVALEX projects were introduced to the researcher in the field of rock mechanics and geotechnical engineering in Korea.

Effects of Groundwater Flow Rate Distribution at a Disposal Depth on Migration of Radionuclides Released from Potential Deposition Holes (처분 심도의 지하수 유량이 처분공에서 누출될 것으로 가정된 방사성핵종의 이동에 끼치는 영향 평가)

  • Ko, Nak-Youl;Jeong, Jongtae;Kim, Kyong-Su
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.3
    • /
    • pp.191-198
    • /
    • 2014
  • Using results of groundwater flow system modeling for a hypothetical deep geological repository site, a distribution of groundwater flow rates at the disposal depth was analyzed and a method of applying this distribution to a safety assessment for a disposal of radioactive wastes was suggested. The distribution of groundwater flow rates was produced by hydraulic heads simulated from regional and local scale groundwater flow models for the hypothetical disposal site. The flow rates at the locations where deposition holes would be located were estimated. These rates were normalized by the maximum of the flow rates in order to probabilistically illustrate a possibility of canister failures at the deposition holes. From the normalized distribution, probabilistic expectations for mass discharges of radionuclides released from the canisters assumed to be failed were calculated and compared with those deterministically estimated under the assumption that the canisters at the same deposition holes were definitely failed. The suggested method can be contributed to constructing a methodology for safety assessment of a geological repository by reflecting natural conditions of a disposal site in more detail.

Analysis of Key Parameters for Designing the Spent Nuclear Fuel Disposal Container in Korea (사용후핵연료 처분용기 설계를 위한 주요인자 분석)

  • Choi, Jong-Won;Cho, Dong-Keun;Choi, Hui-Ju
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.1
    • /
    • pp.37-46
    • /
    • 2006
  • For the first step to develop a reference disposal container of spent fuel to be used in a deep geological repository, this paper examined safe dimensions of the disposal container on the points of nuclear criticality and radiation safety and mechanical structural safety and provided basic information for dimensioning the container and configuration of the container components, and establishing the favorable and safe disposal conditions. When the safety factor for stress due to the external loads (hydrostatic and swelling pressure) is taken as 2.0, the safe diameter of the filler material to provide enough container strength under the assumed external loads is found to be 112cm with 13cm spacing between inner baskets in PWR container. Also the thickness of the thinner section between the fuel basket and the surface of the cast insert is determined to be 150 mm. Regarding these dimensions of the container, the PWR fuel container is sketched to accommodate 4 square assemblies or 297 CANDU fuel 297 bundles (33 circle tubes x 9 stacks). However the top and bottom parts need to be checked again through the detail radiation shielding analysis with respects to the emplacement position and handling processes of the disposal container.

Arrangement of Disposal Holes According to the Features of Groundwater Flow (지하수 유동 특성을 이용한 심층처분의 처분공 배치 방안)

  • Ko, Nak-Youl;Baik, Min-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.321-329
    • /
    • 2016
  • Based on the results of groundwater flow system modeling for a hypothetical deep geological repository site, quantitative and spatial distributions of groundwater flow rates at the positions of deposition holes, groundwater travel length and time from the positions to the surface environment were analyzed and used to suggest a method for determining locations of deposition holes. The hydraulic head values at the depth of the deposition holes and a particle tracking method were used to calculate the ground-water flow rates and groundwater travel length and time, respectively. From the results, an approach to designing a layout of deposition holes was suggested by selecting relatively favorable positions for maintaining performance of the disposal facility and screening some positions of deposition holes that did not comply with specific constraints for the groundwater flow rates, travel length and time. In addition, a method for determining a geometrical direction for extension of the disposal facility was discussed. Designing the layout of deposition holes with the information of groundwater flow at the disposal depth can contribute to secure performance and safety of the disposal facility.

Review of Erosion and Piping in Compacted Bentonite Buffers Considering Buffer-Rock Interactions and Deduction of Influencing Factors (완충재-근계암반 상호작용을 고려한 압축 벤토나이트 완충재 침식 및 파이핑 연구 현황 및 주요 영향인자 도출)

  • Hong, Chang-Ho;Kim, Ji-Won;Kim, Jin-Seop;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.30-58
    • /
    • 2022
  • The deep geological repository for high-level radioactive waste disposal is a multi barrier system comprised of engineered barriers and a natural barrier. The long-term integrity of the deep geological repository is affected by the coupled interactions between the individual barrier components. Erosion and piping phenomena in the compacted bentonite buffer due to buffer-rock interactions results in the removal of bentonite particles via groundwater flow and can negatively impact the integrity and performance of the buffer. Rapid groundwater inflow at the early stages of disposal can lead to piping in the bentonite buffer due to the buildup of pore water pressure. The physiochemical processes between the bentonite buffer and groundwater lead to bentonite swelling and gelation, resulting in bentonite erosion from the buffer surface. Hence, the evaluation of erosion and piping occurrence and its effects on the integrity of the bentonite buffer is crucial in determining the long-term integrity of the deep geological repository. Previous studies on bentonite erosion and piping failed to consider the complex coupled thermo-hydro-mechanical-chemical behavior of bentonite-groundwater interactions and lacked a comprehensive model that can consider the complex phenomena observed from the experimental tests. In this technical note, previous studies on the mechanisms, lab-scale experiments and numerical modeling of bentonite buffer erosion and piping are introduced, and the future expected challenges in the investigation of bentonite buffer erosion and piping are summarized.

Alternative Concept to Enhance the Disposal Efficiency for CANDU Spent Fuel Disposal System (CANDU 사용후핵연료 처분시스템 효율향상 개념 도출)

  • Lee, Jong-Youl;Cho, Dong-Geun;Kook, Dong-Hak;Lee, Min-Soo;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.169-179
    • /
    • 2011
  • There are two types of nuclear reactors in Korea and they are PWR type and CANDU type. The safe management of the spent fuels from these reactors is very important factor to maintain the sustainable energy supply with nuclear power plant. In Korea, a reference disposal system for the spent fuels has been developed through a study on the direct disposal of the PWR and CANDU spent fuel. Recently, the research on the demonstration and the efficiency analyses of the disposal system has been performed to make the disposal system safer and more economic. PWR spent fuels which include a lot of reusable material can be considered being recycled and a study on the disposal of HLW from this recycling process is being performed. CANDU spent fuels are considered being disposed of directly in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System (KRS) which was to dispose of both PWR type and CANDU type, the more effective CANDU spent fuel disposal systems were developed. To do this, the disposal canister for CANDU spent fuels was modified to hold the storage basket for 60 bundles which is used in nuclear power plant. With these modified disposal canister concepts, the disposal concepts to meet the thermal requirement that the temperature of the buffer materials should not be over $100^{\circ}C$ were developed. These disposal concepts were reviewed and analyzed in terms of disposal effective factors which were thermal effectiveness, U-density, disposal area, excavation volume, material volume etc. and the most effective concept was proposed. The results of this study will be used in the development of various wastes disposal system together with the HLW wastes from the PWR spent fuel recycling process.

RADIOLOGICAL CHARACTERISTICS OF DECOMMISSIONING WASTE FROM A CANDU REACTOR

  • Cho, Dong-Keun;Choi, Heui-Joo;Ahmed, Rizwan;Heo, Gyun-Young
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.583-592
    • /
    • 2011
  • The radiological characteristics for waste classification were assessed for neutron-activated decommissioning wastes from a CANDU reactor. The MCNP/ORIGEN2 code system was used for the source term analysis. The neutron flux and activation cross-section library for each structural component generated by MCNP simulation were used in the radionuclide buildup calculation in ORIGEN2. The specific activities of the relevant radionuclides in the activated metal waste were compared with the specified limits of the specific activities listed in the Korean standard and 10 CFR 61. The time-average full-core model of Wolsong Unit 1 was used as the neutron source for activation of in-core and ex-core structural components. The approximated levels of the neutron flux and cross-section, irradiated fuel composition, and a geometry simplification revealing good reliability in a previous study were used in the source term calculation as well. The results revealed the radioactivity, decay heat, hazard index, mass, and solid volume for the activated decommissioning waste to be $1.04{\times}10^{16}$ Bq, $2.09{\times}10^3$ W, $5.31{\times}10^{14}\;m^3$-water, $4.69{\times}10^5$ kg, and $7.38{\times}10^1\;m^3$, respectively. According to both Korean and US standards, the activated waste of the pressure tubes, calandria tubes, reactivity devices, and reactivity device supporters was greater than Class C, which should be disposed of in a deep geological disposal repository, whereas the side structural components were classified as low- and intermediate-level waste, which can be disposed of in a land disposal repository. Finally, this study confirmed that, regardless of the cooling time of the waste, 15% of the decommissioning waste cannot be disposed of in a land disposal repository. It is expected that the source terms and waste classification evaluated through this study can be widely used to establish a decommissioning/disposal strategy and fuel cycle analysis for CANDU reactors.

Evaluating thermal stability of rare-earth containing wasteforms at extraordinary nuclear disposal conditions

  • Kim, Miae;Hong, Kyong-Soo;Lee, Jaeyoung;Byeon, Mirang;Jeong, Yesul;Kim, Jong Hwa;Um, Wooyong;Kim, Hyun Gyu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2576-2581
    • /
    • 2021
  • The thermal stability and crystallization behaviors of La2O3 containing B2O3-CaO-Al2O3 glass waste forms were investigated to evaluate the stability of waste form during emergencies in deep geological disposal. For glasses containing 15% La2O3, LaBO3 phases were observed as major crystals from 780 ℃ and exhibited needlelike structures. Al, Ca, and O were homogeneously distributed throughout the entire specimen, while some portions of B and La were concentrated in some parts. By differential thermal analysis at various heating rates, the activation energy for grain growth and the crystallization rate of LaBO3 were calculated to be 12.6 kJ/mol and 199.5 kJ/mol, respectively. These values are comparable to other waste forms being developed for the same purpose.

Sorption of Se(-II) on illite, MX-80 bentonite, shale, and limestone in Na-Ca-Cl solutions

  • Walker, Andrew;Racette, Joshua;Saito, Takumi;Yang, Tammy (Tianxiao);Nagasaki, Shinya
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1616-1622
    • /
    • 2022
  • Selenium has been identified as an element of interest for the safety assessment of a deep geological repository (DGR) for used nuclear fuel. In Canada, groundwaters at DGR depths in sedimentary rocks have been observed to have a high ionic strength. This paper examines the sorption behavior of Se(-II) onto illite, MX-80 bentonite, Queenston shale, and argillaceous limestone in Na-Ca-Cl solutions of varying ionic strength (0.1-6 mol/kgw (m)) and across a pH range of 4-9. Little ionic strength dependence for Se(-II) sorption onto all solids was observed except that sorption at high ionic strength (6 m) was generally slightly lower than sorption at low ionic strength (0.1 m). Illite and MX-80 exhibited the expected results for anion sorption, while shale and limestone exhibited more constant sorption across the pH range tested. A non-electrostatic surface complexation model successfully predicted sorption of Se(-II) onto illite and MX-80 using the formation of an inner-sphere surface complex and an outer-sphere surface complex. Optimized values for the formation reactions of these surface species were proposed.