• Title/Summary/Keyword: deduced amino acid sequence

Search Result 531, Processing Time 0.028 seconds

Characterization of an Extracellular Xylanase in Paenibacillus sp. HY-8 Isolated from an Herbivorous Longicorn Beetle

  • Heo, Sun-Yeon;Kwak, Jang-Yul;Oh, Hyun-Woo;Park, Doo-Sang;Bae, Kyung-Sook;Shin, Dong-Ha;Park, Ho-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1753-1759
    • /
    • 2006
  • Paenibacillus sp. HY-8 isolated from the digestive tracts of the longicorn beetle, Moechotypa diphysis, produced an extracellular endoxylanase with a molecular weight of 20 kDa estimated by SDS-PAGE. The xylanase was purified to near electrophoretic homogeneity from the culture supernatant after ammonium sulfate precipitation, gel filtration, and ionexchange chromatography. The purified xylanase exhibited the highest activities at pH 6.0 and $50^{\circ}C$. The $K_m\;and\;V_{max}$ values were 7.2 mg/ml and 16.3 U/mg, respectively, for birchwood xylan as the substrate. Nucleotide sequence of the PCR-cloned gene was determined to have the open reading frame encoding a polypeptide of 212 amino acids. The N-terminal amino acid sequence and the nucleotide sequence analyses predicted that the precursor xylanase contained a signal peptide composed of 28 amino acids and a catalytically active 19.9-kDa peptide fragment. The deduced amino acid sequence shared extensive similarity with those of the glycoside hydrolase family 11 of xylanases from other bacteria. The predicted amino acid sequence contained two glutamate residues, previously identified as essential and conserved for active sites in other xylanases of the glycoside hydrolase family 11.

Isolation and Characterization of Calmodulin 2 (CICAM2) Gene from Codonopsis lanceolata

  • Lee, Kang;In, Jun-Gyo;Yu, Chang-Yeon;Min, Byung-Hoon;Chung, Ill-Min;Kim, Se-Young;Kim, Yeong-Chae;Yang, Deok-Chun
    • Plant Resources
    • /
    • v.7 no.3
    • /
    • pp.174-180
    • /
    • 2004
  • Calmodulin, a $Ca^{2+}$-binding protein, has no enzyme activity. It combines with $Ca^{2+}$ and makes variable proteins to an active form. Calmodulin 2 is a ubiquitous protein in plants. To investigate the defense mechanism against various stresses, a clone encoding a calmodulin 2 protein was isolated from a cDNA library prepared from taproot mRNAs of Codonopsis lanceolata. The cDNA, designated CICAM2, is 719 nucleotides long and has an open reading frame of 450 bp with a deduced amino acid sequence of 149 residues. The deduced amino acid sequence of CICAM2 showed a high similarity with calmodulins of P. x hybrida (P27163) 97%, N. tabacum (BAB61908) 97%, S. tuberosum (AAA74405) 96%, Z. mays (CAA74307) 92%, C. richardii (AF510075) 93%, M. truncatula (AAM81203) 91%, and G. max (P62163) 91%. The transcriptional expression of the CICAM2 gene, was gradually increased by the CaCl$_2$ treatment. Whereas its expression And it was gradually decreased in the cold stress treatment.ent.

  • PDF

Isolation and Characterization of Parvalbumin Beta Gene from Channel Catfish (Ictalurus punctatus)

  • Kim, Soon-Hag
    • Journal of Aquaculture
    • /
    • v.16 no.2
    • /
    • pp.124-127
    • /
    • 2003
  • Our previous studies of both microarray analysis in channel catfish muscle gene expression of 2 different ages and channel catfish muscle expressed sequence tag profiles demonstrated parvalbumin beta is one of the highly expressed muscle transcriptome. We have cloned and sequenced complementary DNA encoding the channel catfish parvalbumin which encode 109 amino acids. The deduced amino acid sequences of the catfish parvalbumin are highly conserved with those cloned from other teleosts. The availability of the catfish parvalbumin provides the opportunity of studying fish epitopes.

Functional Identification and Expression of Indole-3-Pyruvate Decarboxylase from Paenibacillus polymyxa E681

  • Phi, Quyet-Tien;Park, Yu-Mi;Ryu, Choong-Min;Park, Seung-Hwan;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1235-1244
    • /
    • 2008
  • Indole-3-acetic acid (IAA) is produced commonly by plants and many bacteria, however, little is known about the genetic basis involving the key enzymes of IAA biosynthetic pathways from Bacillus spp. IAA intermediates from the Gram-positive spore-forming bacterium Paenibacillus polymyxa E681 were investigated, which showed the existence of only an indole-3-pyruvic acid (IPA) pathway for IAA biosynthesis from the bacterium. Four open reading frames (ORFs) encoding indole-3-pyruvate decarboxylase-like proteins and putative indole-3-pyruvate decarboxylase (IPDC), a key enzyme in the IPA synthetic pathway, were found on the genome sequence database of P. polymyxa and cloned in Escherichia coli DH5$\alpha$. One of the ORFs, PP2_01257, was assigned as probable indole-3-pyruvate decarboxylase. The ORF consisted of 1,743 nucleotides encoding 581 amino acids with a deduced molecular mass of 63,380 Da. Alignment studies of the deduced amino acid sequence of the ORF with known IPDC sequences revealed conservation of several amino acids in PP2_01257, essential for substrate and cofactor binding. Recombinant protein, gene product of the ORF PP2_01257 from P. polymyxa E681, was expressed in E. coli BL21 (DE3) as a glutathione S-transferase (GST)-fusion protein and purified to homogeneity using affinity chromatography. The molecular mass of the purified enzyme showed about 63 kDa, corresponding closely to the expected molecular mass of IPDC. The indole-3-pyruvate decarboxylase activity of the recombinant protein, detected by HPLC, using IPA substrate in the enzyme reaction confirmed the identity and functionality of the enzyme IPDC from the E681 strain.

Cloning of cDNA Encoding PAS-4 Glycoprotein, an Integral Glycoprotein of Bovine Mammary Epithelial Cell Membrane

  • Hwangbo, Sik;Lee, Soo-Won;Kanno, Chouemon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.4
    • /
    • pp.576-584
    • /
    • 2002
  • Bovine PAS-4 is an integral membrane glycoprotein expressed in mammary epithelial cells. Complementary DNA (cDNA) cloning of PAS-4 was performed by reverse-transcriptase polymerase chain reaction (RT-PCR) with oligonucleotide probes based on it's amino terminal and internal tryptic-peptides. The cloned PAS-4 cDNA was 1,852 nucleotides (nt) long and its open reading frame (ORF) was encoded 1,413 base long. The deduced amino acid sequence indicated that PAS-4 consisted of 471 amino acid residues with molecular weight of 52,796, bearing 8 potential N-glycosylation sites and 9 cysteine residues. Partial bovine CD36 cDNA from liver also was sequenced and the homology of both nucleotide sequence was 94%. Most of the identical amino acid residues were in the luminal/extracellular domains. Contrary to PAS-4, bovine liver CD36 displays 6 potential N-glycosylation sites, which were located, except for those at positions 101 and 171, at same positions as PAS-4 cDNA. Cysteine residues of PAS-4 and CD36 were same at position and in numbers. Northern blot analysis showed that PAS-4 was widely expressed, although its mRNA steady-state levels vary considerably among the analyzed cell types. PAS-4 possessed hydrophobic amino acid segments near the amino- and carboxyl-termini. Two short cytoplasmic tails of the amino- and carboxyl-terminal ends constituted of a 5-7 and 8-11 amino acid residues, respectively.

Molecular cloning of a rhoptry protein (ROP6) secreted from Toxoplasma gondii

  • Ahn Hye-Jin;Kim Seh-Ra;Nam Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.3
    • /
    • pp.251-254
    • /
    • 2006
  • Monoclonal antibody (mAb) Tg786 against Toxoplasma gondii has been found to detect a 42-kDa rhoptry protein (ROP6) which showed protease activity and host cell binding characteristics after secretion. Using the mAb, a colony containing a 3'-UTR was probed in a T. gondii cDNA expression library. A full length cDNA sequence of the rhoptry protein was completed after 5'-RACE, which consisted of 1,908 bp with a 1,443 bp ORF. The deduced amino acid sequence of ROP6 consisted of a polypeptide of 480 amino acids without significant homology to any other known proteins. This sequence contains an amino terminal stop transfer sequence downstream of a short neutral sequence, hydrophilic middle sequence, and hydrophobic carboxy terminus. It is suggested that the ROP6 is inserted into the rhoptry membrane with both N- and C-termini.

Purification and Characterization of a New Peptidase, Bacillopeptidase DJ-2, Having Fibrinolytic Activity: Produced by Bacillus sp. DJ-2 from Doen-Jang

  • CHOI, NACK-SHICK;YOO, KI-HYUN;HAHM, JEUNG-HO;YOON, KAB-SEOG;CHANG, KYU-TAE;HYUN, BYUNG-HWA;PIL, JAE-MAENG;KIM, SEUNG-HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.72-79
    • /
    • 2005
  • A new Bacillus peptidase, bacillopeptidase DJ-2 (bpDJ-2), with molecular mass of 42 kDa and isoelectric point (pI) of 3.5- 3.7, was purified to homogeneity from Bacillus sp. DJ-2 isolated from Doen-Jang, a traditional Korean soybean fermented food. The enzyme was identified as an extracellular serine fibrinolytic protease. The optimal conditions for the reaction were pH 9.0 and $60^{\circ}C$. The first 18 amino acid residues of the N-terminal amino acid sequence of bpDJ-2 were TDGVEWNVDQIDAPKAW, which is identical to that of bacillopeptidase F (bpf). However, based on their Nterminal amino acid sequence, molecular size, and pI, it is different from that of bpf and extracellular 90 kDa. The whole (2,541 bp, full-bpDJ-2) and mature (1,956 bp, mature-bpDJ-2) genes were cloned, and its nucleotide sequence and deduced amino acid sequence were determined. The expressed proteins, full-bpDJ-2 and mature-bpDJ-2, were detected on SDSPAGE at expected sizes of 92 and 68 kDa, respectively.

Cloning and expression of cDNA for chemokine receptor 9 from Olive flounder, Paralichthys olivaceus

  • Kim, Mu-Chan;An, Geun-Hee;Park, Chan-Il
    • Journal of fish pathology
    • /
    • v.20 no.3
    • /
    • pp.299-306
    • /
    • 2007
  • Cysteine-cysteine chemokine receptor 9 (CCR9) homologue cDNA was isolated from olive flounder leukocyte cDNA library. Olive flounder CCR9 homologue consisted of 1709 bp encoding 367amino acid residues. When compared with other known CCR peptide sequences, the most conserved region of the olive flounder CCR9 peptide is the seven transmembranes. A phylogenetic analysis based on the deduced amino acid sequence showed the homologous relationship between the olive flounder CCR9 sequence and that of Mouse CCR9. The olive flounder CCR9 gene was predominantly expressed in the Peripheral blood leukocytes (PBLs), kidney, spleen, and gills.

A Chymotrypsin Gene Homologue from the Mulberry Longicorn Beetle, Apriona germari: cDNA Sequence Characterization and mRNA Expression Pattern

  • Gui Zong Zheng;Lee Kwang Sik;Yoon Hyung Joo;Kim Iksoo;Sohn Hung Dae;Jin Byung Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.11 no.2
    • /
    • pp.113-117
    • /
    • 2005
  • A chymotrpsin gene homologue was cloned from the mulberry longicorn beetle, Apriona germari. The A. germari chymotrypsin cDNA contains an ORF of 950 nucleotides capable of encoding a 283 amino acid polypeptide with a predicted molecular mass of 29151 Da and pI of 9.38. The A. germari chymotrypsin has conserved six cysteine residues and active triad formed by His, Asp and Ser. The deduced amino acid sequence of the A. germari chymotrypsin cDNA was closest in structure to the Anthonomus grandis chymotrypsin. Northern blot analysis revealed that A. germari chymotrypsin showed the midgut-specific expression.

Molecular Cloning of Thermostable $\alpha$-Amylase and Maltogenci Amylase Genes from Bacillus licheniformis and Characterization of their Enzymatic Properties (Bacillus licheniformis의 내열성 $\alpha$-amylase 및 maltogenic amylase 유전자의 분리와 그 효소 특성)

  • Kim In-Cheol
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 1991.04a
    • /
    • pp.225-236
    • /
    • 1991
  • The genes encoding the thermostable $\alpha$-amylase and maltogenic amylase from Bacillus lichenciformis were cloned and expressed in E. coli. The recombinant plasmid pTA322 was found to contain a 3.1kb EcoRI genomic DNA fragment of the thermostable $\alpha$-amylase. The cloned $\alpha$-amylase was compared with the B. licheniformis native $\alpha$-amylase. Both $\alpha$-amylase have the same optimal temperature of $70^{\circ}C$ and are stable in the pH range of 6 and 9. The complete nucleotide sequences of the thermostable $\alpha$-amylase gene were determined. It was composed of one open reading rame of 1,536 bp. Start and stop codons are ATG and TAG. From the amino acid sequence deduced from the nucleotide sequence, the cloned thermostable $\alpha$-amylase is composed of 483 amino acid residues and its molecular weight is 55,200 daltons. The content of guanine and cytosine is $47.46mol\%$ and that of third base codon was $53_41mol\%$. The recombinant plasmid, pIJ322 encoding the maltogenic amylase contains a 3.5kb EcoRI-BamHI genomic DNA fragment. The optimal reaction temperature and pH of the maltogenci amylase were $50^{\circ}C$ and 7, respectively. The maltogenic amylase was capable of hydrolysing pullulan, starch and cyclodextrin to produce maltose from starch and panose from pullulan. The maltogenic amylase also showed the transferring activity. The maltogenic amylase gene is composed of one open reading frame of 1,734bp. Start and stop codons are ATG and ATG. At 2bp upstream from start codon, the nucleotide sequence AAAGGGGGAA seems to be the ribosome-binding site(RBS, Shine-Dalgarno sequence). A putative promoter(-35 and-10 regions) was found to be GTTAACA and TGATAAT. From deduced amino acid sequence from the nucleotide srquence, this enzyme was comosed of 578 amino acid residues and its molecular weight was 77,233 daltons. The content of guanine and cytosine was $48.1mol\%$. The new recombinant plasmid, pTMA322 constructed by inserting the thermostable $\alpha$-amylase gene in the EcoRI site of pIJ322 to produce both the thermostable $\alpha$-amylase and the maltogenic amylase were expressed in the E. coli. The two enzymes expressed from E. coli containing pTMA322 was reacted with the $15\%$ starch slurry at $40^{\circ}C$ for 24hours. The distribution of the branched oligosaccharides produced by the single-step process was of the ratio 50 : 50 between small oligosaccharide up DP3 and large oligosaccharide above DP3.

  • PDF