• Title/Summary/Keyword: deduced amino acid sequence

Search Result 531, Processing Time 0.023 seconds

Isolation and Identification of ura5 Gene in Entomopathogenic Fungus, Metarhizium anisopoliae (살충성곰팡이 Metarhizium anisopliae의 ura5 유전자의 분리동정)

  • Park, In-Cheol;Lee, Dong-Kyu;Kang, Sun-Cheol;Hwang, Cher-Won
    • Applied Biological Chemistry
    • /
    • v.40 no.1
    • /
    • pp.30-33
    • /
    • 1997
  • About 250 bp ura5 gene (Orotate phosphoribosyl transferase) fragment was cloned from genomic DNA of entomopathogenic fungus Metarhizium anisopliae by using PCR method. Entire nucleotide sequences of cloned DNA fragment were determined and analysed as compared with other fungus ura5 genes. The amino acid sequence deduced from the nucleotide sequence showed 85.5% homology to ura5 protein of Trichoderma reesei. Using this 250 bp PCR fragment we have isolated full ura5 gene of M. anisopliae by genomic Southern hybridization and the isolated 4.4 kb DNA fragments were mapped by restrictional enzyme.

  • PDF

Modified Suppression Subtractive Hybridization Identifies an AP2-containing Protein Involved in Metal Responses in Physcomitrella patens

  • Cho, Sung Hyun;Hoang, Quoc Truong;Phee, Jeong Won;Kim, Yun Young;Shin, Hyun Young;Shin, Jeong Sheop
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.100-107
    • /
    • 2007
  • The moss Physcomitrella patens has two life cycles, filamentous protonema and leafy gametophore. A modified from of suppression subtractive hybridization (SSH), mirror orientation selection (MOS), was applied to screen genes differentially expressed in the P. patens protonema. Using reverse Northern blot analysis, differentially expressed clones were identified. The identified genes were involved mainly in metal binding and detoxification. One of these genes was an AP2 (APETALA2) domain-containing protein (PpACP1), which was highly up-regulated in the protonema. Alignment with other AP2/EREBPs (Ethylene Responsive Element Binding Proteins) revealed significant sequence homology of the deduced amino acid sequence in the AP2/EREBP DNA binding domain. Northern analysis under various stress conditions showed that PpACP1 was induced by ethephon, cadmium, copper, ABA, IAA, and cold. In addition, it was highly expressed in suspension-cultured protonema. We suggest that PpACP1 is involved in responses to metals, and that suspension culture enhance the expression of genes responding to metals.

Expression of the Galactose Mutarotase Gene from Lactococcus lactis ssp. lactis ATCC7962 in Escherichia coli

  • Lee, Jong-Hoon;Choi, Jae-Yeon;Lee, Jung-Min;Kim, Jeong-Hwan;Chang, Hae-Choon;Chung, Dae-Kyun;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.840-843
    • /
    • 2000
  • The structure of gal/lac operon of Lactococcus lactis ssp. lactis ATCC7962 was partially characterized and the gene (galM) encoding galactose mutarotase was cloned together with the order; galA-galM-galK-galT. The galM was found to be 1,027 bp in length and encoded the protein of 37,609 Da calculated molecular mass. The deduced amino acid sequence showed a homology with GalM proteins from several other microorganisms. Thus, the galM gene was expressed in Escherichia coli and the product was identified as a 38 kDa protein which corresponded to the size estimated from DNA sequence. mutarotase activity of the IPTG inducedrecombinant was 2.7 times increased against that of the host strain.

  • PDF

Isolation and Analysis of the argG Gene Encoding Argininosuccinate Synthetase from Corynebacterium glutamicum

  • Ko, Soon-Young;Kim, Sei-Hyun;Lee, Heung-Shick;Lee, Myeong-Sok
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.949-954
    • /
    • 2003
  • The argG gene of Corynebacterium glutamicum encoding argininosuccinate synthetase (EC6345) was cloned and sequenced. The gene was cloned by heterologous complementation of an Escherichia coli arginine auxotrophic mutant (argG/sup -/). The cloned DNA fragment also complements E. coli argD, argF, and argH mutants, suggesting a clustered organization of the genes in the chromosome. The coding region of the argG gene is 1,206 nucleotides long with a deduced molecular weight of about 44 kDa, comparable with the predicted size of the expressed protein on the SDS-PAGE. Computer analysis revealed that the amino acid sequence of the argG gene product had a high similarity to that of Mycobacterium tuberculosis and Streptomyces clavuligerus. Two conserved sequence motifs within the ArgG appear to be ATP-binding sites which correspond to 2 of the 3 conserved regions found in sequences of all known argininosuccinate synthetases.

Expression of orf7(oxi III) as dTDP-Glucose 4,6-Dehydratase Gene Cloned from Streptomyces antibioticus Tu99 and Biochemical Characteristics of Expressed Protein

  • Yoo, Jin-Cheol;Han, Ji-Man;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.206-212
    • /
    • 1999
  • The gene orf7(oxi III) was expressed using an E. coli system in anticipation that it would encode dTDP-glucose 4,6-dehydratase which is involved in the biosynthesis of the olivose moiety of chlorothricin produced from Streptomyces antibioticus Tu99. The solubility of the expressed protein increased up to 20% under optimal induction conditions. The expressed protein was purified from the E. coli BL 21(DE3) cell lysate by a 28.5-fold purification in two chromatography steps with a 38% recovery to near homogeneity. The molecular weight and N-terminal amino acid sequence of the purified protein correlated with the predicted mass and sequence deduced from the orf7 gene. The purified protein was a homodimer with a subunit relative molecular weight of 38,000 Dalton. The expressed protein was found to exhibit dTDP-glucose 4,6-dehydratase activity and be highly specific for dTDP-glucose as a substrate. The values of K'm and V'max for dTDP-glucose were 28 $\mu$M and 295 nmol $min^{-1} (mg protein)^{-1}$, respectively. dTTP and dTDP were strong inhibitors of this enzyme.$NAD^+$, the coenzyme for dTDP-glucose 4,6-dehydratase, was tightly bound to the expressed protein.

  • PDF

Molecular Characterization of AceB, a Gene Encoding Malate Synthase in Corynebacterium glutamicum

  • Lee, Heung-Shick;Anthony J. Sinskey
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.256-263
    • /
    • 1994
  • The aceB gene, encoding for malate synthase, one of the key enzymes of glyoxylate bypass, was isolated from a pMT1-based Corynebacterium glutamicum gene library via complementation of an Escherichia coli aceB mutant on an acetate minimal medium. The aceB gene was closely linked to aceA, separated by 598 base pairs, and transcribed in divergent direction. The aceB expressed a protein product of Mr 83, 000 in Corynebacterium glutamicum which was unusually large compared with those of other malate synthases. A DNA-sequence analysis of the cloned DNA identified an open-reading frame of 2, 217 base pairs which encodes a protein with the molecular weight of 82, 311 comprising 739 aminoo acids. The putative protein product showed only limited amino acid-sequence homology to its counteliparts in other organisms. The N-terminal region of the protein, which shows no apparent homology with the known sequences of other malate synthases, appeared to be responsible for the protein s unusually large size. A potential calciumbinding domain of EF-hand structure found among eukaryotes was detected in the N-terminal region of the deduced protein.

  • PDF

Isolation, Restriction Mapping, and Promoter Sequence Analysis of an Isoperoxidase Gene from Korean-Radish, Raphanus sativus L.

  • Park, Jong-Hoon;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.52-57
    • /
    • 1996
  • A specific DNA fragment from Korean radish (Raphanus sativus L.) was amplified by performing PCR with oligonucleotide primers which correspond to the highly conserved regions of plant peroxidases. The size of the PCR product was ca. 400 bp, as expected from the known plant peroxidase genes. Comparison of the nucleotide and deduced amino acid sequences of the PCR product to those of other plant peroxidase-encoding genes revealed that the amplified fragment corresponded to the highly conserved region I and III of plant peroxidases. By screening a genomic library of Korean radish using the amplified fragment as a probe, two positive clones, named prxK1 and prxK2, were isolated. Restriction mapping studies indicated that the 5.2 kb Sail fragment of the prxK1 clone and the 4.0 kb EcoRI fragment of the prxK2 clone encode separate isoperoxidase genes. Analyses of the promoter region of the prxK1 clone shows that putative CAAT box, CMT box, and TGA1b binding sequence (5' TGACGT) are present 718 bp upstream from the start codon.

  • PDF

Identification of a Gene Encoding Adenylate Kinase Involved in Antifungal Activity Expression of the Biocontrol Strain Burkholderia pyrrocinia CH-67

  • Lee, Kwang Youll;Kong, Hyun-Gi;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.28 no.4
    • /
    • pp.373-380
    • /
    • 2012
  • Burkholderia pyrrocinia CH-67 is a biocontrol bacterium with strong antifungal activity against several plant pathogenic fungi. Transposon mutagenesis was performed to identify the genes responsible for the antifungal activity of B. pyrrocinia CH-67. Of the 2,500 mutants tested using the Fulvia fulva spore screening method, a mutant deficient in antifungal activity, M208, was selected. DNA sequence analysis of the transposon-inserted region revealed that a gene encoding an adenylate kinase-related kinase was disrupted in M208. Antifungal activity was restored in M208 when a full-length adenylate kinase gene with its promoter was introduced in trans. The deduced amino acid sequence of adenylate kinase from CH-67 was 80% identical to that of B. cenocepacia MCO-3. Adenosine diphosphate supplementation or high levels of adenosine triphosphate and adenosine monophosphate together restored antifungal activity in M208, suggesting that adenylate kinase of B. pyrrocinia CH-67 is involved in antifungal activity expression.

Isolation and Nucleotide Sequence Analysis of ADP-glucose Pyrophosphorylase gene from Chinese cabbage (Brassica rapa L.)

  • Kim, In-Jung;Park, Jee-Young;Lee, Young-Wook;Chung, Won-Il;Lim, Yong-Pyo
    • Journal of Plant Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.59-65
    • /
    • 2002
  • ADP-glucose pyrophosphorylase (AGPase) catalyzes the key regulatory step in starch biosynthesis. Two cDNA clones encoding AGPase subunits were isolated from the leaf cDNA library of Chinese cabbage (Brassica campestris L. spp. pekinensis). One was designated as BCAGPS for the small subunit and the other as BCAGPL for the large subunit. Both cDNAs have uninterrupted open reading frames deriving 57 kDa and 63 kDa polypeptides for BCAGPS and BCAGPL, respectively, which showed significant similarity to those of other dicot plants. Also, However, the deduced amino acid sequence of BCAGPL has a unique feature. That is, it contains two regions (Rl and R2) lacking in all other plant enzymes. This is the first report of BCAGPL containing Rl and R2 among plant large subunits as well as small subunits. From the genomic Southern analysis and BAC library screening, we inferred the genomic status of BCAGPS and BCAGPL gene.

Cloning and Sequencing of Resistance Determinants to Aminoglycoside Antibiotics from Sterptoalloteichus hindustanus ATCC 31219 (Streptoalloteichus hindustanus ATCC 31219로부터 아미노글라이코사이드계 항생제에 내성을 지정하는 유전자의 클로닝 및 염기서열 결정)

  • Kim, Jong-Woo;Han, Jae-Jin;Choi, Young-Nae;Eom, Joon-Ho;Yoon, Sung-Joon;Hyun, Chang-Gu;Suh, Joo-Won
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.384-389
    • /
    • 1995
  • Streptoalloteichus hindustanus ATCC 31219, a nebramycin complex producer, is similar to Streptomyeces tenebrarius in a viewpoint of resistance to a wide range of aminoglycoside antibiotics. S. tenebrarius has resistance mechanisms of 16s rRNA methylation and aminogycoside modification. However, it is not known whether resistance mechanisms of Stall. hindustanus are the same as in S. tenebrarius. Therefore, we have tried to isolate resistance determinants from Stall. hindustanus. Two different types of aminoglycoside resistance determinants were isolated from Stall. hindustanus and expressed in Streptomyces lividans TK24. The apramycin resistance gene (amr) and the tobramycin resistance gene (tmr) isolated from Stall. hindustanus showed broad resistance spectrum against a dozen of aminoglycoside antibiotics. The complete nucleotide sequences of apramycin resistance gene (amr) were determined. The deduced amino acid sequence of the amr gene of Stall hindustanus ATCC 31219 showed extensive sequence homology to the 16s rRNA methylase gene (kamB) of S. tenebrarius.

  • PDF