• Title/Summary/Keyword: decreasing ground disaster

Search Result 5, Processing Time 0.023 seconds

A Fundamental Study of a Neo-Grouting Technology for the Decreasing of a Ground Disaster in a High Water Pressure Conditions (고수압 조건에서의 지반재해 저감을 위한 최신 그라우팅 시공관리 기술 기초연구)

  • Kim, Jin-Chun;Yoo, Byung-Sun;Kang, Hee-Jin;Kwon, Young-Sam
    • Journal of Korean Society of Disaster and Security
    • /
    • v.7 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • In the high water pressure construction conditions, it is important that the failures and damages occurrence in the neighboring ground and impermeable prevention methods (design and construction) for a inflow of seawater into structures. Grouting construction markets include a subway construction, a railway construction, a mountain tunnel construction, a new & reinforced construction of river & reservoir levee with big budget per every years. but, there are economic loss about design and construction management parts because that management criteria is not accurate but depends on experiences. Even though grouting technology are using vitally in the major constructions of national levels, it is still serious about the low-reliability problems and the no-criteria problems. therefor the purpose of this study is that provides the fundamental research about the neo-grouting technology for the decreasing of ground disaster in a high water pressure conditions.

Compressive Strength Tests on Frozen Siberian Clay (시베리아 동토지역 점성토의 압축강도 시험)

  • Kim, Young-Chin;Martin, Christ
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.97-104
    • /
    • 2008
  • The objective of this study was to investigate the strength characteristics of frozen clay. Compressive strength tests were performed on frozen clay with different water contents at various temperatures. The dry density of specimens and strain rate was kept constant. Test results showed that compressive strength increased with increasing water content and decreasing temperature. The increase in peak strength became more significant the lower the temperature for a given water content. The failure mode changed from brittle to ductile deformation with increasing water content and decreasing temperature. Tests also showed an increase in deformation modulus with increasing peak strength, increasing water content and decreasing temperature.

  • PDF

Analysis on the Change of Regional Vulnerability to Flood (홍수피해에 따른 지역적 취약성 변화 분석)

  • Hong, Ji-Hea;Hwang, Jin-Hwan
    • Journal of Environmental Policy
    • /
    • v.5 no.4
    • /
    • pp.1-18
    • /
    • 2006
  • Recently, the damage by fresh flood increases in Gangwon-do and Gyeongsangbuk-do of the north-eastern area of Korea. Even though the recent pattern of rain fall keeps changing, there is no strategy to mitigate damage by disaster. For the appropriate measure and policy for decreasing damage, an index for vulnerability is necessary to provide evidence of local climate change. The present work analyzes the flooding damage cost during the past 20 years. During 80's, the southern area of Korea was seriously damaged by over-floods on the agricultural ground. After that time, the loss and damage has decreased in the southern area but the middle part has shown slight but distinct increases of damage. The absolute coast of damage in the northern part has kept constant. However, the relative regional damage to the total country damage has kept increasing over 20 years in the same area. The surface area of floods is strongly correlated with the regional damage cost in the southern part but the north-eastern part has weak correlation between flooded area and cost. It implies that the recent damage in the north-eastern mountain area was not caused by flood itself but the other factors such as avalanches. The present work expects that the damage cost can be a good proxy value for index for climate change impact assessment.

  • PDF

A Model Test on Soil Arching and Loosening Zone Developed in Grounds Composed of Granular Soil Particles (입상체 흙입자로 구성된 지반 속에 발생하는 지반아칭과 이완영역에 관한 모형실험)

  • Hong, Won-Pyo;Kim, Hyun-Myung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.8
    • /
    • pp.13-24
    • /
    • 2014
  • A series of trapdoor model tests was systematically performed in order to investigate soil arching. The mobilized soil arching was clearly observed by change of the vertical earth pressure loaded on trapdoor of soil container box. A slow decent of the loading plate at the trapdoor results in loosening zone over the trapdoor and the stress in this loosening zone was transferred to the stationary zone in the vicinity of the trapdoor. In particular, it was observed that the vertical earth pressure rapidly decreased in the loosening zone and increased in the stationary zone at the trapdoor. Both the maximum decreasing rate of the vertical earth pressure in the loosening zone and the increasing rate of the vertical earth pressure in the stationary zone were not influenced by the ground density, but affected by the size of the trapdoor. The loosening zone could be defined by the elliptical configuration, in which the major axis was twice as long as the height of the loosening zone at the center of trapdoor and the minor axis was the same as the width of trapdoor. The height of loosening zone at the center of trapdoor was one and a half times as long as the width of trapdoor loading plate.

Analysis of Structural Types and Design Factors for Fruit Tree Greenhouses (과수재배용 온실의 구조유형과 설계요소 분석)

  • Nam, Sang-Woon;Ko, Gi-Hyuk
    • Journal of Bio-Environment Control
    • /
    • v.22 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • In order to provide basic data for the development of a controlled environment cultivation system and standardization of the structures, structural status and improvement methods were investigated for the fruit tree greenhouses of grape, pear, and peach. The greenhouses for citrus and grape cultivation are increasing while pear and persimmon greenhouses are gradually decreasing due to the advance of storage facilities. In the future, greenhouse cultivation will expand for the fruit trees which are more effective in cultivation under rain shelter and are low in storage capability. Fruit tree greenhouses were mostly complying with standards of farm supply type models except for a pear greenhouse and a large single-span peach greenhouse. It showed that there was no greenhouse specialized in each species of fruit tree. Frame members of the fruit tree greenhouses were mostly complying with standards of the farm supply type model or the disaster tolerance type model published by MIFAFF and RDA. In most cases, the concrete foundations were used. The pear greenhouse built with the column of larger cross section than the disaster tolerance type. The pear greenhouse had also a special type of foundation with the steel plate welded at the bottom of columns and buried in the ground. As the results of the structural safety analysis of the fruit tree greenhouses, the grape greenhouses in Gimcheon and Cheonan and the peach greenhouses in Namwon and Cheonan appeared to be vulnerable for snow load whereas the peach greenhouse in Namwon was not safe enough to withstand wind load. The peach greenhouse converted from a vegetable growing facility turned out to be unsafe for both snow and wind loads. Considering the shape, height and planting space of fruit tree, the appropriate size of greenhouses was suggested that the grape greenhouse be 7.0~8.0 m wide and 2.5~2.8 m high for eaves, while 6.0~7.0 m wide and 3.0~3.3 m of eaves height for the pear and peach greenhouses.