DOI QR코드

DOI QR Code

A Model Test on Soil Arching and Loosening Zone Developed in Grounds Composed of Granular Soil Particles

입상체 흙입자로 구성된 지반 속에 발생하는 지반아칭과 이완영역에 관한 모형실험

  • Hong, Won-Pyo (Dept. of Civil, Environmental & Plant Engrg., ChungAng Univ.) ;
  • Kim, Hyun-Myung (Disaster Prevention Research Institute, ChungAng Univ.)
  • 홍원표 (중앙대학교 건설환경플랜트공학과) ;
  • 김현명 (중앙대학교 방재연구소)
  • Received : 2014.02.19
  • Accepted : 2014.08.01
  • Published : 2014.08.31

Abstract

A series of trapdoor model tests was systematically performed in order to investigate soil arching. The mobilized soil arching was clearly observed by change of the vertical earth pressure loaded on trapdoor of soil container box. A slow decent of the loading plate at the trapdoor results in loosening zone over the trapdoor and the stress in this loosening zone was transferred to the stationary zone in the vicinity of the trapdoor. In particular, it was observed that the vertical earth pressure rapidly decreased in the loosening zone and increased in the stationary zone at the trapdoor. Both the maximum decreasing rate of the vertical earth pressure in the loosening zone and the increasing rate of the vertical earth pressure in the stationary zone were not influenced by the ground density, but affected by the size of the trapdoor. The loosening zone could be defined by the elliptical configuration, in which the major axis was twice as long as the height of the loosening zone at the center of trapdoor and the minor axis was the same as the width of trapdoor. The height of loosening zone at the center of trapdoor was one and a half times as long as the width of trapdoor loading plate.

지반아칭을 규명하기 위해 일련의 트랩도어 모형실험을 실시하였다. 이 모형실험에서 지반아칭현상은 모형토조바닥에 작용하는 연직토압의 변화를 관찰함으로서 확인할 수 있었다. 트랩도어 재하판의 하강으로 지반변형을 발생시킴으로서 트랩도어 상부지반에 이완영역이 발생하였다. 이때 이완영역내의 응력은 지반아칭현상에 의해 트랩도어 주변의 정지영역으로 전이됨을 알 수 있었다. 즉 연직토압은 이완영역 내에서는 급격히 감소하였고 정지영역에서는 크게 증가하였다. 이완영역 내 연직토압의 최대감소율과 정지영역에서의 연직토압의 최대증가율은 지반밀도에는 영향을 받지 않았으나 트랩도어 재하폭의 크기에는 영향을 크게 받았다. 이완영역은 타원형상으로 정의할 수 있었으며 이타원의 장축은 트랩도어 중앙에서의 이완영역높이의 두 배 크기에 해당하였고 단축은 트랩도어 폭 크기에 해당하였다. 여기서 트랩도어 중앙에서의 이완영역높이는 트랩도어 폭의 1.5배 크기로 나타났다.

Keywords

References

  1. Atkinson, J. H., Brown, E.T. and Potts, D. M. (1975), "Collapse of shallow unlined tunnels in dense sand", Tunnels and Tunnelling, May, pp.81-87.
  2. Atkinson, J. H. and Potts, D. M. (1977), "Stability of a shallow circular tunnel in cohesionless soil", Geotechnique Vol.27, No.2, pp.203-215. https://doi.org/10.1680/geot.1977.27.2.203
  3. Balla, A. (1963), "Rock pressure determined from shearing resistance", Proceeding. Int. Conf. Soil Mechanics, Budapest, pp.461.
  4. Carlsson, B. (1987), "Almerad jord-berakning sprinciper for-bankar papa1ar", Rerranova, Distr, SGI Linkoping.
  5. Han, Y.-C., Kim, S.-H. and Jeong, S.-S. (2014), "Ground behavior around tunnel using tunnel-shaped trapdoor model test", Journal of the Korean Geotechnical Society, Vol.30, No.4, pp.65-80 (in Korean). https://doi.org/10.7843/kgs.2014.30.4.65
  6. Handy, R. L. (1985), "The arch in soil arching", Journal of Geotechnical Engineering, ASCE, Vol.111, No.3, pp.302-318. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(302)
  7. Harris, G. W. (1974), "A sandbox model used to examine the stress distribution around a simulated longwall coal-face", International Journal of Rock Mechanics, Miming Sciences and Geomechanics Abstracts, Pergamon Press, Vol.11, pp.325-335. https://doi.org/10.1016/0148-9062(74)91762-8
  8. Hewlett, W. J. and Randolph, M. F. (1988), "Analysis of piled embankments", Ground Engineering, London Eng1and, Vol.21, No.3, pp.12-18.
  9. Hong, S.W. (1986), "A study on Murayama's method for estimation of settlement due to local yielding in granular media", Journal of the Korean Geotechnical Society, Vol.2, No.2, pp.47-58 (in Korean).
  10. Hong, W. P., Lee, K. W. and Lee, J. H. (2007), "Load transfer by soil arching In pile-supported embankments", Soils and Foundations, Vol.47, No.5, pp.833-843. https://doi.org/10.3208/sandf.47.833
  11. Hong, W. P. and Song, Y. S. (2004), "Estimation method of earth pressures acting on a row of piles due to lateral soil movements", Journal of the Korean Geotechnical Society (KGS), Vol.20, No.3, pp.13-22 (in Korean).
  12. Janssen, H. A. (2006), "Experiments on corn pressure in silo cellstranslation and comment of Janssen's paper from 1895", Granular Mater Vol.8, pp.59-65. https://doi.org/10.1007/s10035-005-0224-z
  13. Kellog, C. G. (1993), "Vertical earth loads on buried engineered works", Journal of Geotechnical Engineering, ASCE, Vol.119, No.3, pp.487-506. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:3(487)
  14. Kingsley, O. H.-W. (1989), "Geostatic wall pressures", Journal of Geotechnical Engineering, ASCE, Vol.115, No.9, pp.1321-1325. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:9(1321)
  15. Ladanyi, B. and Hoyaux, B., "A study of the trapdoor problem in a granular mass", Canadian Geotechnical Journal, Vol.6, No.1, pp.1-14.
  16. Marston, A. and Anderson, A. O. (1913), "The theory of loads on pipes in ditches and tests of cement and clay drain tile and sewer pipe", Bulletin 31, Iowa Engineering Experiments Station, Ames, Iowa.
  17. Matsui, T., Hong, W.P. and Ito, T. (1982), "Earth pressures on piles in a row due to lateral soil movements", Soils and Foundations, Vol.22, No.2, pp.71-81.
  18. Moon, C. Y. (1999), "A Study on earth pressure in unsymmetrical narrow backfill space", Journal of the Korean Geotechnical Society (KGS), Vol.15, No.4, pp.261-277 (in Korean).
  19. Murayama, S. and Matsuoka, H. (1971), "Earth pressures on tunnels in sandy ground", Trans., JSCE, Vol.3, Part1, pp.78-79.
  20. Paik, K. H. (2003), "Nonlinearly distributed active earth pressure on translating rigid retaining wall : I. formulation", Journal of the Korean Geotechnical Society (KGS), Vol.19, No.1, pp.181-189 (in Korean).
  21. Terzaghi, K. (1936), "Stress distribution in dry and in saturted sand above a yielding trap-door", Proceedings of First International Conference on Soil Mechanics and Foundation Engineering, Cambridge, Massachusetts, pp.307-311.
  22. Terzaghi, K. (1943), Theoretical Soil Mechanics, John Wiley and Sons, New York, pp.66-76.
  23. Wong, R. C. K. and Kaiser, P. K. (1988), "Design and performance evaluation of vertical shafts: rational shaft design method and verification of design method", Canadian Geotechnical Journal, Vol.25, No.2, pp.320-337. https://doi.org/10.1139/t88-034
  24. Yoshikoshi, W. (1976), "Vertical earth pressure on a pipe in the ground", Soils and Foundations, Vol.16, No.2, pp.31-41. https://doi.org/10.3208/sandf1972.16.2_31

Cited by

  1. 트랩도어 하강이 일어나는 모형 입자 입상체에서 광탄성 측정 기법을 이용한 흙 아치 구조의 변화 조사 vol.32, pp.10, 2016, https://doi.org/10.7843/kgs.2016.32.10.31