• Title/Summary/Keyword: decomposition series

Search Result 254, Processing Time 0.022 seconds

Effects of Soil Types on Methane Gas Emission in Paddy During Rice Cultivation (논토양 종류가 메탄배출에 미치는 영향)

  • Seo, Young-Jin;Park, Jun-Hong;Kim, Chan-Yong;Kim, Jong-Su;Cho, Doo-Hyun;Choi, Seong-Yong;Park, So-Deuk;Jung, Hyun-Cheol;Lee, Deog-Bae;Kim, Kwang-Seop;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1220-1225
    • /
    • 2011
  • Anaerobic decomposition of organic materials in flooded rice fields produces methane ($CH_4$) gas, which escapes to the atmosphere primarily by transport through organs of the rice plants such as arenchyma etc., Although the annual amount of methane emitted from a given area is influenced by cultivation periods of rice and organic/inorganic amendments etc., soil type also affects methane emission from paddy soil during a rice cultivation. A field experiment was conducted to evaluate effects of soil type on $CH_4$ emission in two paddy soils. One is a red-yellow soil classified as a Hwadong series (fine, mixed, mesic family of Aquic Hapludalfs), and the other is a gley soil classified as a Shinheung series (fine loamy, mixed, nonacid, mesic family of Aeric Fluvaquentic Endoaquepts). During a flooded periods, redox potentials of red-yellow soil were significantly higher than gley soil. $CH_4$ emission in red-yellow soil ($0.21kg\;ha^{-1}\;day^{-1}$) was lower than that in gley soil ($5.25kg\;ha^{-1}\;day^{-1}$). In the condition of different soil types, $CH_4$ emissions were mainly influenced by the content of total free metal oxides in paddy soil. The results strongly imply that iron- or manganese-oxides of well ordered crystalline forms in soil such as goethite and hematite influenced on a $CH_4$ emission, which is crucial role as a $CH_4$ oxidizers in paddy soil during a rice cultivation.

The Studies on Molecular Geometries and Electronic Structures of Substituted meso-Catecholic Porphyrins: DFT Methods and NSD

  • Park, Seung-Hyun;Kim, Su-Jin;Kim, Jin-Dong;Park, Sung-Bae;Huh, Do-Sung;Shim, Yong-Key;Choe, Sang-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1141-1148
    • /
    • 2008
  • Geometry optimizations and electronic structure calculations are reported for meso-tetraphenyl porphyrin (TPP) and a series of meso-substituted catecholic porphyrins (KP99150, KP99151, KP99152, KP99153, and KP99090) using density functional theory (DFT). The calculated B3LYP//RHF bond lengths are slightly longer than those of LSDA//RHF. The calculated electronic structures clearly show that TPP and meso-catecholic group contribute to π-electron conjugation along porphyrin ring for HOMO and LUMO, significantly reduced the HOMO-LUMO gap. The wavelength due to B3LYP energy gaps is favored with experimental value in Soret (B), and LSDA energy gaps are favored with experimental value in visible bands (Q). The electronic effect of the catecholic groups is to reduced energies of both the HOMOs and LUMOs. However, the distortion of porphyrin predominantly raises the energies of the HOMOs, so the net result is a large drop in HOMO and smaller drop in LUMO energies upon meso-substituted catecholic group of the porphyrin macrocycle as shown in KP99151 and KP99152 of Figure 5(a). These results are in reasonable agreement with normal-coordinate structural decomposition (NSD) results. The HOMO-LUMO gap is an important factor to consider in the development of photodynamic therapy (PDT).

Removal Properties of Methylene Blue in Catalytic Ozonation (촉매오존화에 의한 메틸렌 블루 제거특성)

  • Chung, Jae-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.5-12
    • /
    • 2017
  • Effects of operating parameters such as activated carbon dose, gaseous $O_3$ concentration and pH on the properties of methylene blue(MB) degradation in a catalytic ozonation were investigated through a series of batch experiments. Activated carbon catalyzed the self-decomposition of ozone, generating $OH{\cdot}$, thus promoting MB degradation. Thus the increase of activated carbon dose enhanced the MB and TOC removal. The higher gaseous ozone concentration injected, the promoted MB and TOC removal obtained through the enhanced mass transfer. The MB removal was not significantly affected by the variation of aqueous pH. Catalytic ozonation can be considered as an efficient alternative in treating refractory pollutants in textile wastewater with faster and higher dye and TOC removal compared with ozonation and adsorption.

Influences of changes in the Thermal Properties on Pyrolysis of Solid Combustibles (열물성의 변화가 고체 가연물의 열분해에 미치는 영향)

  • Hong, Ter-Ki;Lee, Jong Won;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.41-48
    • /
    • 2017
  • In order to investigate the influence of changes in the thermal properties of solid combustibles on thermal decomposition, a series of solid pyrolysis experiments were performed using a cone calorimeter specified in KS F ISO 5660-1. In the present study, Poly Methyl Methacrylate (PMMA) which does not produce Char during pyrolysis process was used as solid fuel. Results obtained from cone calorimeter experiments were compared to ones obtained from numerical analysis of Fire Dynamics Simulator (FDS) 1D pyrolysis model adopted with thermal properties of solid fuel as input parameters. Comparisons between experimentally calculated and model-predicted mass loss rate were then made to elucidate the effect of changes in the thermal properties on pyrolysis of PMMA.

Effects of Rice Straw Application on Barley Growth and Grain Yield in Paddy Field (답리작 보리 재배시 볏짚 시용 효과)

  • 임시규;김정태;김병주;홍순표;서득용;김완석
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.1
    • /
    • pp.49-55
    • /
    • 1997
  • For the labor-saving cultivation of barley in rice-barley double cropping system in paddy field, a series of expriments on the effect of rice straw application were carried out at the National Yeongnam Agricultural Experiment Station from 1992 to 1993. The affection of phenol compounds released from fresh rice straw could be lessened when seeded under rice straw in the soil and that made emergence rate increase by 11%, compared with that on application on the rice straw. Although utilization of rice straw as an organic material caused the poor growth of barley in early stage, it could be enhanced the culm breaking strength. On this reason, affected by rice straw, grain yield was increased from 8% in common barley and up to 20% in malting barley. The more nitrogen, CaO$_2$2 and SiO$_2$ applied, the more decomposition of rice straw accelerated from 2% to 6.9%. On the application of rice straw as an organic material in malting barely cultivation, the content of crude protein was decreased while 1,000-grain-weight and grain assortment was increased.

  • PDF

Decomposition of Ethylene using a Hybrid Catalyst-packed Bed Plasma Reactor System (플라즈마 충진 촉매 시스템을 이용한 에틸렌 저감 연구)

  • Lee, Sang Baek;Jo, Jin-Oh;Jang, Dong Lyong;Mok, Young Sun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.577-585
    • /
    • 2014
  • A series of experiments using atmospheric-pressure non-thermal plasma coupled with transition metal catalysts were performed to remove ethylene from agricultural storage facilities. The non-thermal plasma was created by dielectric barrier discharge, which was in direct contact with the catalyst pellets. The transition metals such as Ag and $V_2O_5$ were supported on ${\gamma}-Al_2O_3$. The effect of catalyst type, specific input energy (SIE) and oxygen content on the removal of ethylene was examined to understand the behavior of the hybrid plasma-catalytic reactor system. With the other parameters kept constant, the plasma-catalytic activity for the removal of ethylene was in order of $V_2O_5/{\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ from high to low. Interestingly, the rate of plasma-catalytic ozone generation was in order of $V_2O_5/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$, implying that the catalyst activation mechanisms by plasma are different for different catalysts. The results obtained by varying the oxygen content indicated that nitrogen-derived reactive species dominated the removal of ethylene under oxygen-lean condition, while ozone and oxygen atoms were mainly involved in the removal under oxygen-rich condition. When the plasma was coupled with $V_2O_5/{\gamma}-Al_2O_3$, nearly complete removal of ethylene was achieved at oxygen contents higher than 5% by volume (inlet ethylene: 250 ppm; gas flow rate: $1.0Lmin^{-1}$; SIE: ${\sim}355JL^{-1}$).

Synthesis and Characterization of CNT / TiO2 Photoelectrocatalytic Electrodes for Methlene Blue Degradation

  • Zhang, Feng-Jun;Chen, Ming-Liang;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.583-591
    • /
    • 2008
  • In this study, two series of CNT/$TiO_2$ electrodes were prepared. The decrease of surface area compared with that of the pristine carbon nanotubes (CNTs) indicated the blocking of micropores on the surface of the CNTs; was further supported by scanning electron microscopy (SEM) and field emission SEM (FE-SEM) observations. The X-ray diffraction (XRD) results showed that the CNT/$TiO_2$ composites contained a mix of anatase and rutile forms of $TiO_2$ particles when the precursor was $TiO_2$ powder, whereas when the precursor was Ti ($OC_4H_7$) (TNB), the composites contained only the typical single and clear anatase $TiO_2$ particles. The energy dispersive X-ray spectroscopy (EDX) spectra showed the presence of C, O and Ti peaks for all samples. It was found that catalytic decomposition of methylene blue (MB) solution could be attributed to synthetic effects between the $TiO_2$ photocatalysis and electro-assisted CNTs network, and that photoelectrocatalytic oxidation increased with an increase of CNT composition. It was also found that the photoelectrocatalytic oxidation efficiency for MB is higher than that of photocatalytic oxidation. Moreover, the CNT/$TiO_2$ composites catalyst prepared by the impregnation method demonstrates higher photoelectrocatalytic activity than the mechanical mixture with the same CNT content.

MVDR Beamformer for High Frequency Resolution Using Subband Decomposition (부대역을 이용한 MVDR 빔형성기의 주파수 분해능 향상 기법)

  • 이장식;박도현;김정수;이균경
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.62-68
    • /
    • 2002
  • It is well known that the MDVR beamforming outperforms the conventional delay-sum beamformer in the sense of noise rejection and bearing resolution. However, the MDVR method requires long observation time to achieve high frequency resolution. The STMV method uses the steered covariance matrix of sensor data, so it has an ability to form an adaptive weight vector from a single time-series snapshot. But it uses the same weight vector across all frequencies. In this paper, we propose an SSMV method. The basic idea of the SSMV method is to decompose a full frequency band into several subbands to acquire a weight vector for each subband, individually. Also the wrap may be divided into several subarrays in order to reduce a computational load and the bandwidth of each subband. Simulations using real sea trial data show that the proposed SSMV method has good performance with short observation time.

Effect of Operating Parameters on Methyl Orange Removal in Catalytic Ozonation (촉매 오존화 공정에서 메틸오렌지 제거에 미치는 운전변수의 영향)

  • Lee, Myoung-Eun;Kim, Ji-Eun;Chung, Jae Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.7
    • /
    • pp.412-417
    • /
    • 2017
  • Removal characteristics of methyl orange and their dependence on operating parameters in a catalytic ozonation were investigated through a series of batch experiments. Activated carbon enhanced the self-decomposition of ozone, generating $OH{\cdot}$, thus promoting methyl orange degradation. As the carbon dose increases, the pseudo-first order rate constants of methyl orange degradation increased, resulting in the fast removal of methyl orange. The increase of gaseous ozone concentration enhanced the mass transfer to the aqueous solution, therefore, promoted the methyl orange removal. The methyl orange degradation was not significantly affected by the change of pH in the range of 5~12, and TOC removal was negligibly affected by the variation of pH over 7. The results indicate that the catalytic ozonation can be considered as an effective dye treatment technology.

Impact of Trend Estimates on Predictive Performance in Model Evaluation for Spatial Downscaling of Satellite-based Precipitation Data

  • Kim, Yeseul;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.25-35
    • /
    • 2017
  • Spatial downscaling with fine resolution auxiliary variables has been widely applied to predict precipitation at fine resolution from coarse resolution satellite-based precipitation products. The spatial downscaling framework is usually based on the decomposition of precipitation values into trend and residual components. The fine resolution auxiliary variables contribute to the estimation of the trend components. The main focus of this study is on quantitative analysis of impacts of trend component estimates on predictive performance in spatial downscaling. Two regression models were considered to estimate the trend components: multiple linear regression (MLR) and geographically weighted regression (GWR). After estimating the trend components using the two models,residual components were predicted at fine resolution grids using area-to-point kriging. Finally, the sum of the trend and residual components were considered as downscaling results. From the downscaling experiments with time-series Tropical Rainfall Measuring Mission (TRMM) 3B43 precipitation data, MLR-based downscaling showed the similar or even better predictive performance, compared with GWR-based downscaling with very high explanatory power. Despite very high explanatory power of GWR, the relationships quantified from TRMM precipitation data with errors and the auxiliary variables at coarse resolution may exaggerate the errors in the trend components at fine resolution. As a result, the errors attached to the trend estimates greatly affected the predictive performance. These results indicate that any regression model with high explanatory power does not always improve predictive performance due to intrinsic errors of the input coarse resolution data. Thus, it is suggested that the explanatory power of trend estimation models alone cannot be always used for the selection of an optimal model in spatial downscaling with fine resolution auxiliary variables.