DOI QR코드

DOI QR Code

Removal Properties of Methylene Blue in Catalytic Ozonation

촉매오존화에 의한 메틸렌 블루 제거특성

  • 정재우 (경남과학기술대학교 환경공학과)
  • Received : 2017.06.09
  • Accepted : 2017.07.12
  • Published : 2017.09.30

Abstract

Effects of operating parameters such as activated carbon dose, gaseous $O_3$ concentration and pH on the properties of methylene blue(MB) degradation in a catalytic ozonation were investigated through a series of batch experiments. Activated carbon catalyzed the self-decomposition of ozone, generating $OH{\cdot}$, thus promoting MB degradation. Thus the increase of activated carbon dose enhanced the MB and TOC removal. The higher gaseous ozone concentration injected, the promoted MB and TOC removal obtained through the enhanced mass transfer. The MB removal was not significantly affected by the variation of aqueous pH. Catalytic ozonation can be considered as an efficient alternative in treating refractory pollutants in textile wastewater with faster and higher dye and TOC removal compared with ozonation and adsorption.

촉매오존화에 의한 메틸렌 블루(MB) 제거특성과 그에 미치는 운전변수의 영향을 관찰하기 위해 회분식 실험을 수행하였다. 촉매오존화에서 오존 분해반응의 촉매로 작용하는 활성탄의 투입량이 증가함에 따라 MB 및 TOC 제거속도가 증가하는 것으로 나타났다. 반응기로 공급되는 가스상 오존의 농도가 증가함에 따라 물질전달이 크게 일어나므로 MB 제거속도를 증가시키는 것으로 나타났다. 촉매오존화에서 오존의 분해에 의해 생성된 $OH{\cdot}$에 의해 MB의 분해가 일어나므로 오존화에 비해 MB의 제거속도가 빠를 뿐 아니라 훨씬 높은 TOC 제거율을 기대할 수 있는 것으로 나타났다. 촉매오존화에서 오염물질 처리는 pH의 변화에 큰 영향을 받지 않는 것으로 나타나 현장 적용시에 있을 수 있는 유입수의 변동에 대한 적용성이 높은 것으로 나타났다. 이러한 결과는 촉매오존화가 섬유산업에서 발생하는 난분해성 폐수를 처리하기 위한 효과적인 대안이 될 수 있음을 보여준다.

Keywords

References

  1. Zhang, J., Lee, K.-H., Cui, L. and Jeong, T., "Degradation of methylene blue in aqueous solution by ozone-based processes, " Journal of Industrial and Engineering Chemistry, 15(2), 185-189. (2009). https://doi.org/10.1016/j.jiec.2008.09.014
  2. Kim, H., Lee, M.E., Kang, S. and Chung, J.W., "Thermodynamic Analysis of Phenol Adsorption by Powdered Activated Carbon, " Journal of Korean Society of Environmental Engineers, 35(3), 220-225. (2013). https://doi.org/10.4491/KSEE.2013.35.3.220
  3. Kasprzyk-Hordern, B., Ziolek, M. and Nawrocki, J., "Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment, " Applied Catalysis B: Environmental, 46(4), 639-669. (2003). https://doi.org/10.1016/S0926-3373(03)00326-6
  4. Kajitvichyanukul, P., Lu, M.-C., Liao, C.-H., Wirojanagud, W. and Koottatep, T., "Degradation and detoxification of formaline wastewater by advanced oxidation processes, "Journal of Hazardous Materials, 135(1-3), 337-343. (2006). https://doi.org/10.1016/j.jhazmat.2005.11.071
  5. Kusic, H., Koprivanac, N. and Bozic, A. L., "Minimization of organic pollutant content in aqueous solution by means of AOPs: UV- and ozone-based technologies, " Chemical Engineering Journal, 123(3), 127-137. (2006). https://doi.org/10.1016/j.cej.2006.07.011
  6. Lei, L., Gu, L., Zhang, X., Su, Y., "Catalytic oxidation of highly concentrated real industrial wastewater by integrated ozone and activated carbon, " Applied Catalysis A: General, 327(2), 287-294. (2007). https://doi.org/10.1016/j.apcata.2007.05.027
  7. Thiruvenkatachari, R., Kwon, T. O., Jun, J. C., Balaji, S., Matheswaran, M. and Moon, I. S., "Application of several advanced oxidation processes for the destruction of terephthalic acid(TPA), " Journal of Hazardous Materials, 142(1-2), 308-314. (2007). https://doi.org/10.1016/j.jhazmat.2006.08.023
  8. Zhang, X., Chen, P., Wu, F., Deng, N., Liu, J. and Fang, T., "Degradation of $17{\alpha}$-ethinylestradiol in aqueous solution by ozonation, " Journal of Hazardous Materials, 133(1-3), 291-298. (2006). https://doi.org/10.1016/j.jhazmat.2005.10.026
  9. Liu, Q.-S., Zheng, T., Wang, P., Jiang, J.-P. and Li, N., "Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers, " Chemical Engineering Journal, 157(2-3), 348-356. (2010). https://doi.org/10.1016/j.cej.2009.11.013
  10. Kang, S.F. and Chang, H.M., "Coagulation of Textile Secondary Effluents with Fenton's Reagent, " Water Sci. Technol., 36(12), 215-222. (1997). https://doi.org/10.1016/S0273-1223(97)00707-5
  11. Lee, H.-D., Kim, J.-O. and Chung, J.-W., "Degradation of Methyl Orange by Pulsed Corona Discharge Process in Water, " Desalination and Water Treatment, 53(10), 2767-2773. (2015). https://doi.org/10.1080/19443994.2014.931526
  12. Song, S.J,, Oh, B.S., Kim, K.S., Na, S.J., Lee, E.T. and Kang, J.W., "A Study on the Advanced Oxidation Process by Catalytic Ozonation with Granular Activated Carbon, " Journal of Korean Society of Environmental Engineers, 26(1), 52-57. (2004).
  13. Polo, M.S., Utrilla, J.R., Joya, G.P., Garcia, M.A.F. and Toledo, I.B., "Removal of pharmaceutical compounds, nitroimidazoles, from waters by using the ozone/carbon system, " Water Research, 42(15) 4163-4171. (2008). https://doi.org/10.1016/j.watres.2008.05.034
  14. Oliveira, T.F., Chedeville, O., Fauduet, H. and Cagnon, B., "Use of ozone/activated carbon coupling to remove diethyl phthalate from water: Influence of activated carbon textural and chemical properties, " Desalination, 276(1-3), 359-365. (2011). https://doi.org/10.1016/j.desal.2011.03.084
  15. Valdes, H. and Zaror, C.A., "Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: Kinetic approach, " Chemosphere, 65(7), 1134-1136. (2006).
  16. Moon, J.H., "The catalytic effect of the ozone/CNT process using para-chlorobenzoic acid, " Department of Environmental Engineering, Graduate School Yonsei University, (2013)
  17. Alvarez, P.M., Garcia-Araya, J.F., Beltrana, F.J., Giraldez, I., Jaramillo, J. and Gomez-Serrano, V., "The influence of various factors on aqueous ozone decomposition by granular activated carbon and the development of mechanistic approach, " Carbon, 44(14), 3102-3112. (2006). https://doi.org/10.1016/j.carbon.2006.03.016
  18. Sanchez-Polo, M. and Rivera-Utrill, J., "Effect of the ozone-carbon reaction on the catalytic activity of activated carbon during the degradation of 1, 3, 6-naphthalenetrisulphonic acid with ozone, " Carbon, 41(2), 303-307. (2003). https://doi.org/10.1016/S0008-6223(02)00288-9
  19. Lee, M.-E., Kim, J.-E. and Chung, J.W., "Effect of operating parameters on methyl orange in catalytic ozonation, " Journal of Korean Society of Environmental Engineers, 39(7), 412-417. (2017). https://doi.org/10.4491/KSEE.2017.39.7.412
  20. Rivas, F.J., Beltran, F., Gimeno, O., Acedo, B. and Carvalho, F., "Stabilized leachates: Ozoneactivated carbon treatment and kinetics, " Water Research, 37(20), 4823-4834. (2003). https://doi.org/10.1016/j.watres.2003.08.007
  21. Sanchez-Polo, M. and Rivera-Utrill, J., "Effect of the ozone-carbon reaction on the catalytic activity of activated carbon during the degradation of 1, 3, 6-naphthalenetrisulphonic acid with ozone, " Carbon, 41(2), 303-307. (2003). https://doi.org/10.1016/S0008-6223(02)00288-9
  22. Jans, U. and Horigne, J., "Activated Carbon and Carbon Black Catalyzed transformation of aqueous ozone into OH radical, " Ozone Science & Engineering, 20(1), 67-87. (1998). https://doi.org/10.1080/01919519808547291