• Title/Summary/Keyword: decode and forward

Search Result 193, Processing Time 0.02 seconds

Efficient Synchronization Scheme for Cooperative Communication System over Fading Channel (페이딩 환경에서의 효율적인 협력통신 시스템 동기 알고리즘 연구)

  • Kim, Yoon-Hyun;Kim, Jin-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.64-68
    • /
    • 2010
  • In this paper, we studied the novel synchronization algorithm for cooperative communication system over fading. We research mainly on the decode-and-forward scheme. Also, we inserted spreading sequence in origin data frame to control efficiently data synchronization. In mobile station, inserted spreading sequence in data frame passed through the corelation process. We had decide the delay value of received data through result of correlation process. In simulation, We applied that channel gain of three node had different value in various fading environment. Finally we will be possible to control the received data synchronization using result of corelation value in each node between relay to mobile station and base station to mobile station. The results of this paper can be applicable to the cooperative systems.

Co-channel Interference Mitigation using Orthogonal Transmission Scheme for Cooperative Communication System with Decode-and-Forward Relays (복조후 전송 중계기를 이용한 협력통신 시스템에서 직교 전송 개념을 이용한 동일 채널 간섭 완화)

  • Kim, Eun-Cheol;Seo, Sung-Il;Kim, Jin-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.34-41
    • /
    • 2010
  • In this paper, we analyze and simulate co-channel interference (CCI) mitigation method for cooperative communication systems employing decode-and-forward relays. In co-channel interference mitigation method, A source transmits signals that are encoded by orthogonal code. Then, the receiver can distinguish its own signals form the received signals by using the orthogonal code which is already known to the receiver. The orthogonal codes applied to this paper are orthogonal Gold codes. However, we can employ other codes, which have orthogonality, as the orthogonal code. In addition, we utilize a space time block coding (STBC) scheme for enhancing the system performance by obtaining additional array gain.

Outage Analysis and Optimal Power allocation for Network-coding-based Hybrid AF and DF (네트워크 코딩 기반의 협력통신에서 Hybrid AF and DF 방식의 아웃티지 성능 분석 및 최적 파워 할당 기법)

  • Bek, Joo-Ha;Lee, Dong-Hoon;Lee, Jae-Young;Heo, Jun
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.95-107
    • /
    • 2012
  • Network coding was proposed to increase the achievable throughput of multicast in a network. Recently, combining network coding into user cooperation has attracted research attention. For cooperative transmission schemes with network coding, users combine their own and their partners messages by network coding. In previous works, it was shown that adaptive DF with network coding can achieve diversity gain and additional throughput gain. In this paper, to improve performance of conventional protocols and maximize advantage of using network coding, we propose a new network coding based user cooperation scheme which uses adaptively amplify-and-forward and decode-and-forward according to interuser channel status. We derive outage probability bound of proposed scheme and prove that it has full diversity order in the high SNR regime. Moreover, based on the outage bound, we compute optimal power allocation for the proposed scheme.

Bandwidth-Efficient Transmission Protocol for Cooperative MIMO: Design and Analysis (분산 다중 안테나 기반의 상호 협력 통신을 위한 전송 프로토콜의 설계 및 분석)

  • Ryu, Hyun-Seok;Kang, Chung-G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.418-425
    • /
    • 2008
  • In this paper, we propose two different types of cooperative transmission protocols, referred to as spatial multiplexing with receive diversity (SMRD), that are bandwidth-efficient. We show that the BER performance can be significantly improved with a proper design of SMRD protocol under the AF (Amplify-and-Forward) and the DF (Decode-and-Forward) modes of relaying, when there is no interference among all symbols transmitted in the same time slot. BER analysis and our simulation result show that the proposed transmission protocol achieves a significant gain over no-cooperation (direct transmission) without any bandwidth expansion.

Opportunistic Relay Selection for Joint Decode-and-Forward Based Two-Way Relaying with Network Coding

  • Ji, Xiaodong;Zheng, Baoyu;Zou, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1513-1527
    • /
    • 2011
  • This paper investigates the capacity rate problems for a joint decode-and-forward (JDF) based two-way relaying with network coding. We first characterize the achievable rate region for a conventional three-node network scenario along with the calculation of the corresponding maximal sum-rate. Then, for the goal of maximizing the system sum-rate, opportunistic relay selection is examined for multi-relay networks. As a result, a novel strategy for the implementation of relay selection is proposed, which depends on the instantaneous channel state and allows a single best relay to help the two-way information exchange. The JDF scheme and the scheme using relay selection are analyzed in terms of outage probability, after which the corresponding exact expressions are developed over Rayleigh fading channels. For the purpose of comparison, outage probabilities of the amplify-and-forward (AF) scheme and those of the scheme using relay selection are also derived. Finally, simulation experiments are done and performance comparisons are conducted. The results verify that the proposed strategy is an appropriate method for the implementation of relay selection and can achieve significant performance gains in terms of outage probability regardless of the symmetry or asymmetry of the channels. Compared with the AF scheme and the scheme using relay selection, the conventional JDF scheme and that using relay selection perform well at low signal-to-noise ratios (SNRs).

Link Adaptation and Selection Method for OFDM Based Wireless Relay Networks

  • Can, Basak;Yomo, Hiroyuki;Carvalho, Elisabeth De
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.118-127
    • /
    • 2007
  • We propose a link adaptation and selection method for the links constituting an orthogonal frequency division multiplexing (OFDM) based wireless relay network. The proposed link adaptation and selection method selects the forwarding, modulation, and channel coding schemes providing the highest end-to-end throughput and decides whether to use the relay or not. The link adaptation and selection is done for each sub-channel based on instantaneous signal to interference plus noise ratio (SINR) conditions in the source-to-destination, source-to-relay and relay-to-destination links. The considered forwarding schemes are amplify and forward (AF) and simple adaptive decode and forward (DF). Efficient adaptive modulation and coding decision rules are provided for various relaying schemes. The proposed end-to-end link adaptation and selection method ensures that the end-to-end throughput is always larger than or equal to that of transmissions without relay and non-adaptive relayed transmissions. Our evaluations show that over the region where relaying improves the end-to-end throughput, the DF scheme provides significant throughput gain over the AF scheme provided that the error propagation is avoided via error detection techniques. We provide a frame structure to enable the proposed link adaptation and selection method for orthogonal frequency division multiple access (OFDMA)-time division duplex relay networks based on the IEEE 802.16e standard.

Adaptive Power allocation inenergy-constrained wireless ad-hoc networks (전력 제한된 무선 애드혹 네트워크에서의 적응적 전력할당기법)

  • Gao, Xiang;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.336-342
    • /
    • 2008
  • We proposed a simple power allocation scheme to maximize network lifetime for "amplify and forward(AF)" and "decode and forward(DF)". To maximize network lifetime, it is important to allocate power fairly among nodes in a network as well as to minimize total transmitted power. In the proposed scheme, the allocated power is proportional to the residual power and also satisfies the required SNR at destination node. In this paper, we calculate power allocation in model of AF and DF. We evaluated the proposed power allocation scheme using extensive simulation and simulation results show that proposed power allocation obtains much longer network lifetime than the equal power allocation.

Capacity Analysis of an AF Relay Cooperative NOMA System Using MRC

  • Xie, Xianbin;Bi, Yan;Nie, Xi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4231-4245
    • /
    • 2020
  • Non-orthogonal multiple access (NOMA) is widely studied in both academia and industry due to its high spectral efficiency over orthogonal multiple access (OMA). To effectively improve spectrum efficiency, an amplify-and-forward (AF) cooperative NOMA system is proposed as well as a novel detection scheme is proposed, in which we first perform successive interference cancellation (SIC) twice at U1 for the two signals received from two time slots to remove interference from symbol 2, then two new signals apply max ratio combining (MRC). In addition, a closed-form upper bound approximation for the ergodic capacity of our proposed system is derived. Monte-Carlo simulations and numerical analysis illustrate that our proposed system has better ergodic capacity performance than the conventional cooperative NOMA system with decode-forward (DF) relay, the conventional cooperative NOMA system with AF relay and the proposed AF cooperative NOMA system in [16]. In addition, we can see that ergodic capacity of all NOMA cooperative systems increase with the increase of transmit SNR. Finally, simulations display that power allocation coefficients have little effect on ergodic capacity of all NOMA cooperative systems. This is due to this fact that ergodic capacity of two symbols can be complementary with changing of power allocation coefficients.

On the Performance of the Block-Based Selective OFDM Decode-and-Forward Relaying Scheme for 4G Mobile Communication Systems

  • Yang, Wendong;Cai, Yueming
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.56-62
    • /
    • 2011
  • In this paper, we propose a block-based selective orthogonal frequency division multiplexing (OFDM) decode-and-forward relaying scheme for 4G mobile communication systems. In the scheme, an OFDM symbol is divided into blocks and one relay is selected for each block. Theoretical outage performance and error performance are analyzed and evaluated. A unified outage expression is given for our scheme and the other two schemes and the lower bound of the bit error rate of the three schemes is also obtained. The effect of the coherence bandwidth on the proposed scheme is also investigated. Monte Carlo simulations are carried out to validate our analysis. The scheme can obtain a good tradeoff between complexity and performance and can be used in future 4G mobile communication systems.

Error Rate and Capacity Analysis for Incremental Hybrid DAF Relaying using Polar Codes

  • Madhusudhanan, Natarajan;Venkateswari, Rajamanickam
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.291-302
    • /
    • 2018
  • The deployment of an incremental hybrid decode-amplify and forward relaying scheme is a promising and superior solution for cellular networks to meet ever-growing network traffic demands. However, the selection of a suitable relaying protocol based on the signal-to-noise ratio threshold is important in realizing an improved quality of service. In this paper, an incremental hybrid relaying protocol is proposed using polar codes. The proposed protocol achieves a better performance than existing turbo codes in terms of capacity. Simulation results show that the polar codes through an incremental hybrid decode-amplify-and-forward relay can provide a 38% gain when ${\gamma}_{th(1)}$ and ${\gamma}_{th(2)}$ are optimal. Further, the channel capacity is improved to 17.5 b/s/Hz and 23 b/s/Hz for $2{\times}2$ MIMO and $4{\times}4$ MIMO systems, respectively. Monte Carlo simulations are carried out to achieve the optimal solution.