This paper presents a hybrid model solution for user motion recognition. The use of a single classifier in motion recognition models does not guarantee a high recognition rate. To enhance the motion recognition rate, a hybrid model consisting of decision trees and artificial neural networks is proposed. We define six user motions commonly performed in an indoor environment. To demonstrate the performance of the proposed model, we conduct a real field test with ten subjects (five males and five females). Experimental results show that the proposed model provides a more accurate recognition rate compared to that of other single classifiers.
Communications for Statistical Applications and Methods
/
제13권2호
/
pp.449-466
/
2006
We propose to use variable selection methods based on penalized regression for pruning decision tree ensembles. Pruning methods based on LASSO and SCAD are compared with the cluster pruning method. Comparative studies are performed on some artificial datasets and real datasets. According to the results of comparative studies, the proposed methods based on penalized regression reduce the size of boosting ensembles without decreasing accuracy significantly and have better performance than the cluster pruning method. In terms of classification noise, the proposed pruning methods can mitigate the weakness of AdaBoost to some degree.
Journal of the Korean Data and Information Science Society
/
제23권2호
/
pp.375-383
/
2012
The purpose of the ensemble methods is to increase the accuracy of prediction through combining many classifiers. According to recent studies, it is proved that random forests and forward stagewise regression have good accuracies in classification problems. However they have great prediction error in separation boundary points because they used decision tree as a base learner. In this study, we use the kernel ridge regression instead of the decision trees in random forests and boosting. The usefulness of our proposed ensemble methods was shown by the simulation results of the prostate cancer and the Boston housing data.
Purpose - In this study, we propose an empirical model for predicting seasoned equity offering (SEO here after) using machine learning methods. Design/methodology/approach - The models utilize the random forest method based on decision trees that considers non-linear relationships, as well as the gradient boosting tree model. SEOs incur significant direct and indirect costs. Therefore, CEOs' decisions of seasoned equity issuances are made only when the benefits outweigh the costs, which leads to a non-linear relationship between SEOs and a determinant of them. Particularly, a variable related to market timing effectively exhibit such non-linear relations. Findings - To account for these non-linear relationships, we hypothesize that decision tree-based random forest and gradient boosting tree models are more suitable than the linear methodologies due to the non-linear relations. The results of this study support this hypothesis. Research implications or Originality - We expect that our findings can provide meaningful information to investors and policy makers by classifying companies to undergo SEOs.
Purpose: The purpose of this study was to develop and compare the prediction model for suicide attempts by Korean adolescents using logistic regression and decision tree analysis. Methods: This study utilized secondary data drawn from the 2019 Youth Health Risk Behavior web-based survey. A total of 20 items were selected as the explanatory variables (5 of sociodemographic characteristics, 10 of health-related behaviors, and 5 of psychosocial characteristics). For data analysis, descriptive statistics and logistic regression with complex samples and decision tree analysis were performed using IBM SPSS ver. 25.0 and Stata ver. 16.0. Results: A total of 1,731 participants (3.0%) out of 57,303 responded that they had attempted suicide. The most significant predictors of suicide attempts as determined using the logistic regression model were experience of sadness and hopelessness, substance abuse, and violent victimization. Girls who have experience of sadness and hopelessness, and experience of substance abuse have been identified as the most vulnerable group in suicide attempts in the decision tree model. Conclusion: Experiences of sadness and hopelessness, experiences of substance abuse, and experiences of violent victimization are the common major predictors of suicide attempts in both logistic regression and decision tree models, and the predict rates of both models were similar. We suggest to provide programs considering combination of high-risk predictors for adolescents to prevent suicide attempt.
본 논문은 손실값을 포함하는 불완전한 데이터를 처리하는 방법에 대해 논한다. 손실값을 최적으로 처리한다는 것은 학습 데이터가 가지고 있는 정보들에서 본래값과 가장 근사한 추정치를 구하고, 이 값으로 손실값을 대치하는 것이다. 이것을 실현하기 위한 방안으로 분류기가 정보를 분류하는 과정에서 완성되어가는 결정트리를 이용한다. 다시말해 이 결정트리는 전체 학습 데이터 중에서 손실값을 포함하지 않는 완전한 정보만을 C4.5 분류기에 입력하여 학습하는 과정에서 얻어진다. 이 결정트리의 노드들은 분류 변수의 정보를 가지는데, 루트에 가까운 상위 노드일수록 많은 정보를 포함하게 되고 말단 노드에서는 루트로부터의 경로를 통해 분류 영역을 형성하게 된다. 또한 각 영역에는 분류된 데이터 사건들의 평균이 기록된다. 손실값을 포함하는 사건들은 이러한 결정트리에 입력되어 각 노드의 정보에 따라 순회과정을 통해 사건과 가장 근접한 영역을 찾아가게 된다. 이 영역에 기록된 평균값을 손실값의 추정치로 간주하고, 보상 과정은 완성된다.
Purpose: This descriptive study was done to develop a predictive model of depression in rural elders that will guide prevention and reduction of depression in elders. Methods: A cross-sectional descriptive survey was done using face-to-face private interviews. Participants included in the final analysis were 461 elders (aged${\geq}$ 65 years). The questions were on depression, personal and environmental factors, body functions and structures, activity and participation. Decision tree analysis using the SPSS Modeler 14.1 program was applied to build an optimum and significant predictive model to predict depression in rural elders. Results: From the data analysis, the predictive model for factors related to depression in rural elders presented with 4 pathways. Predictive factors included exercise capacity, self-esteem, farming, social activity, cognitive function, and gender. The accuracy of the model was 83.7%, error rate 16.3%, sensitivity 63.3%, and specificity 93.6%. Conclusion: The results of this study can be used as a theoretical basis for developing a systematic knowledge system for nursing and for developing a protocol that prevents depression in elders living in rural areas, thereby contributing to advanced depression prevention for elders.
본 논문은 대규모 데이터베이스에서 유용한 지식을 발견하기 위해 라프셋을 중심으로 한 통합적 방법을 제시한다. 본 방업에서는 데이터베이스에 있는 실제 데이터에서 일반화된 데이터를 추출하기 위해 속성중심의 개념계층 상승기법을 사용하고, 획득 정보량을 측정하기 위해 결정 트리에 의한 귀납법을 사용한다. 그리고 불필요한 속성 및 속성값을 제거하기 위해 라프셋 이론의 지식감축 방법을 적용한다. 통합 알고리즘은 먼저, 개념의 일반화에 의해 데이터베이스의 크기를 줄이고, 다음으로 결정속성에 영향을 적게 미치는 조건속성을 제거함으로써 속성의 수를 줄인다. 마지막으로 속성간의 종속관계를 분석함으로써 불필요한 속성값을 제거하여 간략화된 결정규칙을 유도한다.
Purpose: This study was aimed to investigate experiences, perceptions, and educational needs related to patient safety and the factors affecting these perceptions. Methods: Study design was a descriptive survey conducted in November 2019. A sample of 1,187 Koreans aged 20-80 years participated in the online survey. Based on previous research, the questionnaire used patient safety-related and educational requirement items, and the Patient Safety Perception Scale. Descriptive statistics and a decision tree analysis were performed using SPSS 25.0. Results: The average patient safety perception was 71.71 (± 9.21). Approximately 95.9% of the participants reported a need for patient safety education, and 88.0% answered that they would participate in such education. The most influential factors in the group with low patient safety perceptions were the recognition of patient safety activities, age, preference of accredited hospitals, experience of patient safety problems, and willingness to participate in patient safety education. Conclusion: It was confirmed that the vulnerable group for patient safety perception is not aware of patient safety activities and did not prefer an accredited hospital. To prevent patient safety accidents and establish a culture of patient safety, appropriate educational strategies must be provided to the general public.
International Journal of Fuzzy Logic and Intelligent Systems
/
제16권1호
/
pp.27-35
/
2016
Black-box classifiers, such as artificial neural network and support vector machine, are a popular classifier because of its remarkable performance. They are applied in various fields such as inductive inferences, classifications, or regressions. However, by its characteristics, they cannot provide appropriate explanations how the classification results are derived. Therefore, there are plenty of actively discussed researches about interpreting trained black-box classifiers. In this paper, we propose a method to make a fuzzy logic-based classifier using extracted rules from the artificial neural network and support vector machine in order to interpret internal structures. As an object of classification, an anomalous propagation echo is selected which occurs frequently in radar data and becomes the problem in a precipitation estimation process. After applying a clustering method, learning dataset is generated from clusters. Using the learning dataset, artificial neural network and support vector machine are implemented. After that, decision trees for each classifier are generated. And they are used to implement simplified fuzzy logic-based classifiers by rule extraction and input selection. Finally, we can verify and compare performances. With actual occurrence cased of the anomalous propagation echo, we can determine the inner structures of the black-box classifiers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.