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Pruning the Boosting Ensemble of Decision Trees

Young Joo Yoonl) and Moon Sup Song2

Abstract

We propose to use variable selection methods based on penalized regression for
pruning decision tree ensembles. Pruning methods based on LASSO and SCAD are
compared with the cluster pruning method. Comparative studies are performed on
some artificial datasets and real datasets. According to the results of comparative
studies, the proposed methods based on penalized regression reduce the size of
boosting ensembles without decreasing accuracy significantly and have better
performance than the cluster pruning method. In terms of classification noise, the
proposed pruning methods can mitigate the weakness of AdaBoost to some degree.

Keywords . AdaBoost; Penalized regression; Cluster pruning, LASSO; SCAD;
Pruning ensemble.

1. Introduction

Boosting is one of the most powerful methods for combining classifiers to improve
prediction accuracy. The adaptive boosting algorithm AdaBoost (Freund and
Schapire, 1997) with the decision-tree algorithm C4.5 (Quinlan, 1993} or CART
(Breiman et al.,, 1984) has been extensively studied. The AdaBoost algorithm is an
ensemble method which generates a set of classifiers and votes for the prediction by
combining the generated classifiers. The idea of boosting is to construct classifiers
sequentially by focusing the base learning algorithm on the training examples that
have been misclassified by previous classifiers. Then boosting combines the "weak”
classifiers to produce a "strong” committee. The boosting algorithm AdaBoost has
been called the best off-the-shelf classifier because of its superior performance (see,
e.g. Breiman, 1998, and Tamon and Xiang, 2000).

Despite its good performance, AdaBoost with decision trees requires a large
amount of memory space to store the constructed trees. For example, Margineantu
and Dietterich (1997) observed that for the Frey-Slate letter recognition dataset,
AdaBoost requires about 200 trees to achieve a reasonable accuracy. However, each
tree requires 295 Kbytes of memory, and so the final ensemble of 200 trees requires
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59 Mbytes. They investigated if it is possible to discard some of the constructed
trees while obtaining nearly the same levels of performance as the entire set. The
results show that the ensemble produced by AdaBoost can be radically pruned in
some datasets. They called this “pruning the ensemble.”

Margineantu and Dietterich (1997) proposed five methods of pruning the boosting
ensemble. Among the five methods, the kappa pruning method has shown good
performance. The idea behind this method is based on the assumption that boosting
works by constructing a diverse, vet accurate, collection of classifiers. To choose
diverse classifiers they used the kappa statistics to measure the disagreement of two
classifiers. The kappa pruning method continues to choose pairs of classifiers with
the lowest agreement until a pre-specified number of classifiers are chosen. Tamon
and Xiang (2000) proposed a slight modification to the kappa pruning method called
weight shifting. They shifted the voting weights of pruned trees onto its unpruned
neighbors.

Lazarevic and Obradovic (2001) proposed a method for pruning classifiers from
ensembles based on a clustering approach. This method partitions the set of
classifiers into subsets containing similar classifiers by using the standard 2
-means clustering algorithm. Then redundant classifiers from each cluster are
eliminated according to their accuracy on the validation set or according to their
disagreement with the retained ones.

Treating the trees in an ensemble as variables in a linear regression model, we
may apply the variable selection techniques to choose some trees in the ensemble.
There are a number of variable selection methods in linear regression, and we are
mainly interested in regularization or penalized regression methods which include
ridge regression, LASSO (Least Absolute Shrinkage and Selection Operator) and
SCAD (Smoothly Clipped Absolute Deviation). Increasing the regularization
parameter, the solution to the LASSO or SCAD problem tends to be sparse. That is,
only a small fraction of all possible trees will be relevant in approximating the
prediction rule.

This paper consists of three main parts : a review of AdaBoost and penalized
regression, pruning the boosting ensemble of decision trees, and a summary and
concluding remarks. In Section 2, we briefly introduce AdaBoost. Also we review
some well-known penalized regression methods such as the LASSO and SCAD
methods. In Section 3, we propose pruning boosting ensemble methods via penalized
regression. To compare the proposed methods with other methods, experiments were
performed on simulated datasets and also on real datasets. The performances of
various methods are compared in terms of test error and the number of selected
classifiers. The test errors of the proposed methods are better than or similar to
those of AdaBoost and cluster pruning. But the number of selected trees is
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significantly smaller than those of the boosting ensemble and cluster pruning in
many cases. Especially with classification noise the pruning methods based on
penalized regression can significantly improve the weakness of AdaBoost. Finally, a
summary and concluding remarks are provided in Section 4.

2. AdaBoost and Penalized Regression

2.1 AdaBoost

Boosting is one of the most powerful learning algorithms. The boosting algorithm
applies a "weak” or "base” learning algorithm repeatedly to a different distribution
(or a newly weighted training set) to produce a new weak classifier, and combines
these weak classifiers to construct a ”"strong” prediction rule. The most popular
boosting algorithm is AdaBoost proposed by Freund and Schapire (1997).

In this paper we consider only a two class problem.Let {(z, v, ), (z5,95), -, (2, 4,)}
be a training set, where z is a vector of predictor variables and y is a two-class
response variable such that y&{—1,1}. A weak classifier (learner) is one whose
error rate is slightly better than random guessing. We sequentially apply the weak
classification algorithm repeatedly to the training set with modified weights,
producing a sequence of weak classifiers h,(z),t=1,2,---,T. The final prediction rule

is defined as follows:

T
H(w)=sign(2a,h, (z)),

t=1

where «@,0,,---,ap are the weights assigned to the weak classifiers h,. Thus,
each «, indicates the importance of h,. For each iteration ¢t=1,2,---,7, the
weights assigned to examples are individually modified and the classification
algorithm is reapplied to the updated training examples. At each iteration the
weights of examples misclassified by h, are increased and those of correctly
classified examples are decreased. Thus each classifier is forced to concentrate on
the training examples that are misclassified by the previous classifier. <Figure 1>
shows the details of AdaBoost.M1. In this paper AdaBoost.M1 is referred to
AdaBoost for simplicity.
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1. Initialize the observation weights w;, =1/n, i=1,2,--,n.
2. For t=1to T
(a) Fit a classifier h,(z) to the training data using weights w;.

(b) Compute €, = (Ewif(y,- = hy(z;)))/ Zwi'
i=1 =
(c) Compute a, =log((1—¢,)/e,).
(d) Set wy—w, + exple, I(y; = h, ()], i=1,2,--,n
T
3. Output G(z)zsign[Zatht (a:)}

t=1

<Figure 1> AdaBoost.M1 algorithm

2.2 Penalized Regression

Variable selection is an important topic in linear regression analysis. By retaining
a subset of the predictors and discarding the rest (for example, stepwise forward
selection or backward elimination), the reduced regression model is more
interpretable and sometimes reduces the prediction error.

Although subset selection methods are practically useful, they have several
drawbacks. The most severe drawback is their lack of stability. Since the variables
are either retained or discarded, subset selection methods often show high variance
and do not reduce the prediction error of the full model. Shrinkage methods are
useful to overcome these difficulties, since they do not suffer as much from high
variability (Hastie et al. 2001, Chapter 3).

2.2.1 LASSO
Consider the linear regression model

y=XB+e,
where y is an nXx1 vector and X is an nXp matrix.
The LASSO (Least Absolute Shrinkage and Selection Operator) was proposed by
Tibshirani (1996). The LASSO is a shrinkage method like the ridge regression, using
an L, penalty instead of the L, penalty in the ridge regression. Thus the LASSO

estimator is defined by

BLASSO _ argming{ i (y, — ixi]ﬂj)? + A i |:Bj|}.
i=1 j=1

Jj=1

i=
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Because of the L, penalty the solution is not linear in y, and usually quadratic

programming methods are used to calculate the LASSO estimate. As the
regularization parameter X\ increases, some of the coefficients tend to be exactly zero.

2.2.2 SCAD

Fan and Li (2001) proposed a variable selection method based on a SCAD
(Smoothly Clipped Absolute Deviation) penalty function. As a motivation for the
SCAD penalty they claimed that a good penalty function should result in an
estimator with the following three properties:

- Unbiasedness : The resulting estimator is nearly unbiased when the true
unknown parameter is large to avoid unnecessary modelling bias.

- Sparsity @ The resulting estimator is a thresholding rule, which automatically
sets small estimated coefficients to zero to reduce model complexity.

- Continuity : The resulting estimator is continuous in data to avoid instability in
model prediction.

For simplicity, we only consider the following penalized least square problem

%(z—mupk(ml).

To satisfy the conditions for unbiasedness, sparsity and continuity, Fan and Li
(2001) proposed the SCAD penalty function defined by

6] ,0<16l< A
1
p, (161) = A m(¢92—2a/\l0)+,\2)’ A< 6 < al
%Wrm , 10> ax

for some a > 2. The derivative of the SCAD function is given by

(ad— 0)+

(a—_l‘)Tl(0> )\)} for some o> 2 and 6> 0,

p, (6)= )\{](0 < A+

where (t), =0 for t<0 and (t). =t for t>0. The solution to the SCAD
penalty is given by
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sign(z)(zl= )y, |2l < 2A
((a—1)z—sign(z)a)), 2x<lzl < aX

-2
z , |zl > a

Fan and Li (2001) also proposed an algorithm for minimizing penalized general
loss via local quadratic approximations. Denote a loss function by I(3). Then the
penalized general loss can be written in a unified form as

1B)+n 3y (18)).

i=1

Under some mild conditions, both terms can be locally approximated by a
quadratic function (see Fan and Li, 2001). Therefore the minimization problem of the
unified form can be reduced to a quadratic minimization problem and the
Newton-Raphson algorithm can be used.

3. Pruning the Boosting Ensemble of Decision Trees
3.1 Proposed Penalized Methods

To formulate the penalized methods, let hy hy, -,k be the classifiers produced by
AdaBoost based on a training set {(z,y,),(z2¥s),*,(z,v,)}. Let a, be the weight

corresponding to h,, t=1,---, T. Then the final prediction rule is given by

H(z)= sz'gn( 2 ah, (z))

t=1

To estimate the coefficients 3= (8, -, ﬁT)T we want to minimize a given loss

function with a penalty. That is, the penalized estimate 3 is defined by

T
B= argminﬁ{L(y,F) +n YD, (Iﬂtl)},

=1
when L(y,F(z)) is a loss function and p,{:) is a penalty function. We are

interested in the following loss functions.

Ly, F) = exp(—yF) exponential loss
Ly, F) =log(1+exp(—yF)) binomial loglikelihood loss
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We know that LASSO and SCAD are good penalty functions to choose a subset of
coefficients without sacrificing the prediction error too much. Thus we propose to
use these two penalty functions in pruning the ensemble. The unified algorithm
suggested by Fan and Li (2001), compute 3 for SCAD. The estimate 3 based on
LASSO can be computed by using the forward stagewise algorithm proposed by
Rosset et al. (2004). The weight «, is expected to be a good initial value 3,, for each
t=1,---,7. The algorithms of the proposed penalized methods are briefly
summarized in <Figure 2> - <Figure 3>.

1. Perform the Adaboost with a base learner.
2. Let H=(hy,-,hy) where h; = (h;(z)),h;(25), - h;(z,))7,
i=1,, T h,e{-1,1}.
3. Repeat
(a) Initialize B, = (ay,-,a4)7.
(b) Until (3; is converged)
B=B;-1 AV Ly, F)+nZ,(B,_ )} {V Ly, ) +nU,(B;-,))
where V L(y,F) = ———aLA(y’F) VLY, F)= —?QL(yi?
0B 88;-198;-1
25 (B;- ) = diag{p', (1B, 1.1 1)s+p 3 1B,-1. 2D},
U)\(/@j—l) =23 (ﬁj—l)ﬁj—ly Bj—l = (/Bj—l.l ) Aj- I.T)T-

<Figure 2> SCAD method for classifier pruning of AdaBoost

L]

1. Perform the Adaboost with a base learner.

2. Let H= (hy,--,hy) where h; = (h;(z,),h; (@), h;(z,))T
i=1,, T h,e{—1,1}.

3. By =0, where By = (8, B.7)"

4. For m=1 to M
(a) Let F=HB,,_, where F=(F,,--,F,)7

oL(y;, F;)
oF,

i

(b) Set w; = , 1=1,2,-,m,
(¢c) Identify j, which maximizes lZw,—hj(x,-)l.

(d) Set B, ;,=0Bi-,;, —€- sign(Zwihjo) and B, =B,-1.4 k*= jo

<Figure 3> LASSO penalty method for classifier pruning of AdaBoos
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3.2 Simulation Studies

To compare the proposed methods with other methods, numerical experiments are
performed with simulated data sets.

3.2.1 Data Sets Description

For numerical comparison, the following data sets that were introduced in Breiman
(1998) are used.

- Twonorm : This is 20-dimension, 2-class data. Each class is drawn from a
multivariate normal distribution with unit covariance matrix. Class 1 has mean

(a,a,---,a) and class 2 has mean (—a,—a,---,—a), where a=2/+/20.

- Threenorm : This is 20-dimension, 2-class data. Class 1 is drawn with equal
probability from a unit multivariate normal with mean (a,a,---,a) and from a unit

multivariate normal with mean (—a,—a,---,—a). Class 2 is drawn from a unit
multivariate normal with mean (a,— a,a,— a,+-,~—a) Where a=2//20.

The size of the training set for each model is 200. We generate a validation set of
size 200 to determine the regularization (tuning) parameter which minimizes the
validation error. To estimate the accuracy of the pruned ensemble we use a test set
of size 1000.

3.2.2 Base Learning Algorithm and Selection Methods

In simulation studies, we used CART as the base learner without pruning. We
constructed classification trees of depth 1 and 3. Since the simulation results are
almost the same as those of depth 3 for larger trees, we report only two cases. The
number of AdaBoost iterations is 200, that is, we use 200 classification trees in each
ensemble. The Monte Carlo simulation was performed 100 times to compute the
average test error and average size of the pruned ensemble.

The pruning ensemble methods based on LASSO and SCAD are implemented with
exponential loss. We also implement penalized methods with binomial loglikelihood
loss functions. But the test errors of exponential loss and binomial loglikelihood loss
make little difference. So we use only penalized methods with exponential loss. The
unsupervised cluster pruning method needs a validation set to compute the accuracy
of each classifier in order to eliminate redundant classifiers in each cluster. Thus
20% of the training set was used as a validation set, which is different from the
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validation set of size 200 to determine the regularization parameter. The simulations
were performed on a personal computer with a Pentium IV 1.7GHz processor using
R (version 1.9.0).

3.2.3 Results of Simulation Studies

Numerical comparison results are summarized in Table 1 - Table 2. The pruning
methods reduce the size of classifiers, while achieving a similar level of performance
as the entire boosting ensemble. In these limited numerical comparisons, the pruning
methods are effective in terms of the size of c¢lassifiers and test error. The pruning
methods via penalized regression are better than cluster pruning in most cases.
Especially for the decision trees with depth equal to 1, the penalized regression
methods are much better than cluster pruning. For twonorm data, SCAD performs
slightly better than LASSO. Average test errors are similar, but the sizes of
classifiers of SCAD are slightly smaller when compared with LASSO. However, in
the case of threenorm data, these trends are reversed, i.e. the LASSO method is
better than SCAD. The SCAD method slightly increases test errors.

<Table 1> Results for twonorm data

Method Ave. Test Error Ave, Size
Depth=1

AdaBoost 0.0556 (0.0083)x 200.00

SCAD 0.0597 (0.0111) 57.65

LASSO 0.0608 (0.0095) 70.14

Cluster Pruning Method 0.0637 (0.0129) 17499
Depth=3

AdaBoost 0.0467 (0.0082) 200.00

SCAD 0.0545 (0.0079) 63.81

LASSO 0.0580 (0.0103) 95.80

Cluster Pruning Method 0.0558 (0.0114) 77.02

*The values in parentheses indicate standard errors of test error.

<Table 2> Results for threenorm data

Method Ave. Test Error Ave. Size
Depth=1

AdaBoost 0.2247 (0.0180)* 200.00

SCAD 0.2605 (0.0154) 61.25

LASSO 0.2345 (0.0166) 4954

Cluster Pruning Method 0.2455 (0.0232) 181.78
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<Table 2> Continued

Depth=3
AdaBoost 0.1946 (0.0152)+ 200.00
SCAD 0.2418 (0.0341) 72.25
LASSO 0.2008 (0.0173) 100.05
Cluster Pruning Method 0.1937 (0.0152) 164.20

*The values in parentheses indicate standard errors of test error.

3.3 Real Data Analysis

The real datasets used in this section were obtained from the University of
California at Irvine (UCI) Machine Learning Repository (Blake and Merz, 1998). The
datasets of this repository are often used by the machine learning community for
empirical analyses.

3.3.1 Data

We used four datasets for our comparative study. The datasets are the Wisconsin
Breast Cancer dataset, the Credit Card Application Approval dataset, the Ionosphere
dataset, and the Sonar dataset. We summarize these datasets as follows:

- Wisconsin Breast Cancer Dataset (BREAST): Each observation (example) has
one of 2 possible classes : benign, malignant. By using 10 integer predictors (e.g.
clump thickness, uniformity of cell size and so on), they will attempt to decide
whether the class is benign or malignant. The number of observations is 699, and
the number of predictor variables is 10. Originally, this dataset contains 16
observations with a single missing value. However, we remove missing values in our
experiments. Therefore the number of observations used in our analysis is 683.

- Credit Card Application Approval Dataset (CRX): This dataset concerns the
approval of a credit card’s issue. All attribute names and values have been changed
to meaningless symbols to protect confidentiality of the data. The class values are +
(credit card approval) and - (rejection). This dataset has 15 predictors. 37
observations have one or more missing values, and those observations with missing
values are removed. Thus, we analysed this dataset using 653 observations.

~ Jonosphere Dataset (IONO): In this dataset, we classify each observation by
whether it is a "good” radar or not. There are 34 continuous predictors. There are no
missing observation. The number of observations in this dataset is 351.

- Sonar Dataset (SONAR): This is the dataset for the classification of sonar

signals. It contains 60 predictors which represent the energy within a particular
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frequency band, integrated over a certain period of time. These predictors are used
for classification of sonar signals ("R” is a rock, "M” a mine). 208 observations are
contained in this dataset.

<Table 3> Summary of dataset

Variables
Dataset Size Classes  Numerical Categorical
BREAST 683 2 10 0
CRX 653 2 6 9
IONO 351 2 34 0
SONAR 208 2 60 0

<Table 3> shows a summary of the four datasets. To compare the performances
of various algorithms for these datasets, we used 5-fold cross validation. By using
this method, regularization parameters or tuning parameters (e.g. threshold value in
cluster pruning method) which minimize the validation error are decided.

3.3.2 Base Learning Algorithm and Selection Methods

The setting is similar to the one in Subsection 3.2. We used CART without
pruning as the base learning algorithm. Instead we restrict the depth of the tree, to
be 1 or 3. The number of AdaBoost iterations is 200. The proposed LASSO and
SCAD methods with exponential loss function are compared with the cluster pruning
method.

3.3.3 Results

The results on the datasets are given in <Table 4> - <Table 7>. The results on
real datasets are similar to the results on simulated datasets. The pruning methods
prune many {(more than half) of the classifiers. Especially for the BREAST data with
depth=1, the sizes are reduced to 1/10 of the 200 boosting classifiers without
increasing the CV errors. For the other datasets, the ensemble sizes are reduced
significantly while maintaining the same level of performances on the whole. For the
SONAR dataset with depth=1, the SCAD method increases the CV errors while
reducing the sizes. Also for the same dataset with depth=3, the size is not reduced
very much. But the size is about 602 of the AdaBoost size, and the CV error is
reduced, the proposed methods are acceptable. These results show that the pruning
methods based on penalized regression are successful, therefore it is useful to apply
the pruning methods to the AdaBoost procedure.
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<Table 4> Results for BREAST dataset

Depth=1 Depth=3
Method CV Error Size  CV Error Size
AdaBoost 0.0425 (0.0077)« 200 0.0366 (0.0072) 200
SCAD 0.0337 (0.0069) 23 0.0337 (0.0069) 43
LASSO 0.0366 (0.0072) 17 0.0351 (0.0070) 58

Cluster Pruning Method  0.0425 (0.0077) 183  0.0371 (0.0072) 101

*The values in parentheses indicate standard errors of the CV error.

<Table 5> Results for CRX dataset

Depth=1 Depth=3
Method CV Error Size CV Error Size
AdaBoost 0.1532 (0.0141)* 200 0.1516 (0.0140) 200
SCAD 0.1286 (0.0131) 17 0.1501 (0.0140) 45
LASSO 0.1317 (0.0132) 29  0.1363 (0.0134) 82

Cluster Pruning Method 0.1317 (0.0132) 193 0.1501 (0.0140) 101

*The values in parentheses indicate standard errors of the CV error.

<Table 6> Results for IONO dataset

Depth=1 Depth=3
Method CV Error Size CV Error Size
AdaBoost 0.0854 (0.0149)« 200 0.0711 (0.0137) 200
SCAD 0.0883 (0.0151) 75 0.0711 (0.0137) 49
LASSO 0.0854 (0.0149) 55 0.0711 (0.0137) 54

Cluster Pruning Method 0.0912 (0.0154) 172 0.0655 (0.0132) 171

*The values in parentheses indicate standard errors of the CV error.
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<Table 7> Results for SONAR dataset

Depth=1 Depth=3
Method CV Error Size CV Error Size
AdaBoost 0.1587 (0.0253)* 200 0.1153 (0.0221) 200
SCAD 0.1730 (0.0262) 75 01057 (0.0213) 116
LASSO 0.1394 (0.0240) 97  0.1009 (0.0209) 66

Cluster Pruning Method 0.1490 (0.0247) 188  0.0962 (0.0204) 149

*The values in parentheses indicate standard errors of the CV error.

3.3.4 Classification Noise

Dietterich (2000) found that the performance of AdaBoost could be destroyed by
some noise cases. In Dietterich (2000), he concluded that classification noise destroys
the effectiveness of AdaBoost compared to other ensemble methods such as Bagging
(Breiman, 1996) and Randomization (Dietterich, 2000), and AdaBoost is not a good
choice in this situation. We expect that pruning methods can improve this weakness
to some degree. That is, pruning methods can not only reduce the misclassification
rate, but also reduce the size of the boosting ensemble. To explore the effects of
classification noise, we added random classification noise. That is, we chose 2096 of
the data (randomly, without replacement) and changed their class labels to be
incorrect. We expect that AdaBoost will try to fit the noise data and continue to
produce ineffective trees. In this case, as the number of boosting iterations increases,
the final prediction rule may overfit the training data. We thus choose 30 or 50
boosting iterations to construct an ensemble of classification trees. The results of the
pruning ensemble with 100 and 200 iterations are almost the same as those for 50
iterations, so we omit the results in this paper. We again performed the pruning
methods based on penalized regression. Because the performance of the clustering
pruning method is worse than those of the penalized methods as we can see the
results of previous sections, the clustering pruning method was not performed.

3.3.5 Results of Analysis with Classification Noise

The results of analysis with classification noise are shown in <Table 8> -~ <Table
11>. As in the without-noise cases (in Subsection 3.3.3), the pruning methods did
not significantly increase the CV errors and reduced the sizes of boosting ensembles
significantly. Because of the weakness of boosting in the classification noise cases,



462 Young Joo Yoon and Moon Sup Song

the performance of 50 iterations is similar to or worse than that of 30. The large
boosting ensemble is not always necessary but a small boosting ensemble could be
better than a large one. However, after pruning the boosting ensemble, the
performance and the size of the ensemble are not significantly different. So we can
expect that the behaviors of the ensembles after pruning are almost the same in
terms of the CV errors and sizes as the number of iterations exceeds 30.

The results of the experiment show that in many cases the sizes and CV errors
are reduced simultaneously after pruning. This fact is especially remarkable for the
CRX dataset with depth=3. The CV errors after pruning are reduced by 10-20%
compared to the AdaBoost CV errors and the sizes are reduced by more than 50%.
The pruning method based on the LASSO penalty prunes more trees than other
methods. As in the linear regression setting, the LASSO method is slightly better
than the SCAD method when the dataset is contaminated with some noise. As
expected, the pruning methods based on penalized regression can improve the
weakness of AdaBoost to some degree.

<Table 8> Results for BREAST dataset with classification noise

size 30 size 50
Method CV Error Size CV Error Size
Depth=1
AdaBoost  0.2504 (0.0166)* 30 0.2445 (0.0164) 50
SCAD 0.2372 (0.0163) 12 0.2343 (0.0162) 16
LASSO 0.2299 (0.0161) 11 0.2269 (0.0161) 18
Depth=3
AdaBoost  0.2489 (0.0165) 30 0.2474 (0.0165) 50
SCAD 0.2372 (0.0163) 16 0.2328 (0.0162) 21
LASSO 0.2269 (0.1603) 2 0.2240 (0.0160) 5

*The values in parentheses indicate standard errors of the CV error.

<Table 9> Results for CRX dataset with classification noise

size 30 size 50
Method CV Error Size CV Error Size
Depth=1
AdaBoost  0.2986 (0.0179)* 30 0.2879 (0.0177) 50
SCAD 0.2848 (0.0177) 4 0.2848 (0.0177) 5
LASSO 0.2741 (0.0175) 5 0.2741 (0.0175) 5
Depth=3
AdaBoost  0.3706 (0.0189) 30 0.3721 (0.0189) 50
SCAD 0.3078 (0.0181) 11 0.3063 (0.0180) 11
LASSO 0.3002 (0.0179) 7 0.3032 (0.0180) 11

*The values in parentheses indicate standard errors of the CV error.
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<Table 10> Results for IONO dataset with classification noise

size 30 size 50
Method CV Error Size CV Error Size
Depth=1
AdaBoost  0.3077 (0.0246)* 30 0.3105 (0.0247) 50
SCAD 0.2906 (0.0242) 8 0.2906 (0.0242) 10
LASSO 0.2906 (0.0242) 2 0.2906 (0.0242) 5
Depth=3
AdaBoost  0.3020 (0.0245) 30 0.3048 (0.0246) 50
SCAD 0.2991 (0.0244) 15 0.2877 (0.0242) 11
LASSO 0.2991 (0.0244) 2 0.2934 (0.0243) 4

*The values in parentheses indicate standard errors of the CV error.

<Table 11> Results for SONAR dataset with classification noise

size 30 size B0
Method CV Error Size CV Error Size
Depth=1
AdaBoost  0.4039 (0.0340)* 30 0.4087 (0.0341) 50
SCAD 0.3894 (0.0338) 10 0.3894 (0.0338) 9
LASSO 0.3942 (0.0339) 6 0.3942 (0.0339) 2
Depth=3
AdaBoost  0.3606 (0.0333) 30 0.3606 (0.0333) 50
SCAD 0.3798 (0.0337) 22 0.3750 (0.0336) 30
LASSO 0.3654 (0.0334) 10 0.3798 (0.0337) 12

*The values in parentheses indicate standard errors of the CV error.

4, Summary and Concluding Remarks

In this paper, pruning boosting ensemble methods via penalized regression are
considered. Sometimes the ensemble constructed by AdaBoost becomes too large to
be usefully applied in real problems. Thus it is necessary to prune the ensemble of
decision trees without sacrificing too much accuracy. To prune the ensemble of
decision trees effectively, we propose pruning methods that apply the variable
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selection methods via penalized regression technique using LASSO and SCAD
penalty functions. The pruning methods via penalized regression reduce the size of
the boosting ensemble without significant increase of test or CV errors. Occasionally
the size of the ensemble can be reduced to about 1/10 without hurting the
performance of the ensemble. Sometimes the pruned ensemble achieves an
improvement in the test error. The performance of AdaBoost could be destroyed by
some noise cases. We showed that the proposed pruning methods can improve this
weakness of AdaBoost to some degree. The experiments were performed on real
datasets by adding random errors to the class variable y. In most cases of high
noise level, the number of trees pruned by the pruning methods via penalized
regression is very large. Taking into account these results, it is very useful to apply
the proposed methods after performing the AdaBoost procedure.

A unified algorithm proposed by Fan and Li (2001) is used to estimate regression
coefficients for the SCAD penalty function. This algorithm contains a matrix
inversion. Thus the stability of the algorithm can not be guaranteed. In addition, the
solution may be a local one since the object function is locally approximated by a
quadratic function. To improve these problems of the unified algorithm, stagewise
approaches such as gradient boosting (Friedman, 2001) and margin boost (Mason et
al., 2000) can be considered. It could be worth while studying a boosting ensemble
via penalized regression using a SCAD penalty function.

The proposed pruning ensemble methods can be used for the estimation of the
weights of various ensemble methods. For example, the balancing method (Heskes,
1997) is an intermediate form between bagging (Breiman, 1996) and bumping
(Tibshirani and Knights, 1999). The balancing method uses quadratic programming
to estimate the weights of classifiers and thus the computation is expensive and may
be impossible for large datasets. Thus if the proposed pruning methods are applied to
the balancing method, we expect that our method can give better results than
Heskes’ (1997) approach.

Referneces

[1] Breiman, L. (1996). Bagging predictors. Machine Learning, Vol. 24, 123-140.

[2] Breiman, L. (1998). Arcing classifiers (with discussion). Annals of Statistics, Vol.
26, 801-849.

[3] Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and
Regression Trees, Chapman and Hall, New York.

[4] Dietterich, T.G. (2000). An experimental comparison of three methods for
constructing ensembles of decision trees: bagging, boosting, and



Pruning the Boosting Ensemble of Decision Trees 465

randomization. Machine Learning, Vol. 40, 139-157.

{5] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood
and its oracle properties. Journal of the American Statistical Association,
Vol. 96, 1348-1360.

[6] Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of
online learning and application to boosting. Journal of Computer and
System Science, Vol. 55, 119-139.

{71 Friedman, J. (2001). Greedy function approximation: a gradient boosting machine.
Annals of Statistics, Vol. 29, 1189-1232.

[8] Hastie, T., Tibshirani, R. and Friedman, JH. (2001). Elements of Statistical
Learning. Springer-Verlag, New York.

[9] Heskes, T. (1997). Balancing between bagging and bumping, In Mozer, M.,
Jordan, M., and Petsche, T. editors. Advances in Neural Information
Processing, Morgan Kaufmann.

[10] Lazarevic, A. and Obradovic, Z. (2001). The effective pruning of neural network
ensembles. Proceedings of 2001 IEEE/INNS International Joint
Conference on Neural Networks, 796-801.

{11] Margineanty, D.D. and Dietterich, T.G. (1997). Pruning adaptive boosting.
Proceedings of the 14th International Conference in Machine Learning,
211-218.

[12] Mason, L., Baxter, J.,, Bartlett, P.L. and Frean, M. (2000). Functional gradient
techniques for combining hypotheses, In A. J. Smola, P. L. Bartlett, B.
Scholkopf and D. Schuurmans, editors. Advances in Large Margin
Classifiers, Cambridge: MIT press.

[13] Merz, C.J. and Murphy, P.M. (1998). UCI Repository of Machine Learning
database. Available at http://www.ics.uci.edu/ mlearn/MLRepository.html

[14] Quinlan, J.R. (1993). C45 : Programs for Machine Learning, Morgan Kaufmann,
San Maeto, CA.

[15] Quinlan, J.R. (1996). Bagging, boosting, and C4.5. Proceeding of 13th National
Conference on Artificial Intelligence, 725-730.

[16] Rosset, S., Zhu, J. and Hastie, T. (2004). Boosting as a regularized path to a
maximum margin classifier. Journal of Machine Learning Research,
Vol. 5, 941-973.

[17] Tamon, C. and Xiang, J. (2000). On the boosting pruning problem. Proceedings
of 11th European Conference on Machine Learning, Lecture Notes in
Computer Science, Vol. 1810, 404-412.

[18] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal
of Royal Statistical Society B, Vol. 58, 267-288.

[19] Tibshirani, R. and Knight, K. (1999). Model selection and inference by bootstrap



466 Young Joo Yoon and Moon Sup Song

"bumping”. Journal of Computational and Graphical Statistics, Vol. 8,
671-686.

[Received April 2006, Accepted July 2006]



