• Title/Summary/Keyword: decision map

Search Result 414, Processing Time 0.024 seconds

Comparison and Analysis on Risk Assessment Models of Coastal Waters considering Human Factors (인적요인을 고려한 연안해역 위험도 평가모델 비교·분석)

  • Kim, In-Chul;An, Kwang
    • Journal of Navigation and Port Research
    • /
    • v.40 no.1
    • /
    • pp.27-34
    • /
    • 2016
  • For the prevention of marine casualties, international bodies have mainly focused on strengthening ship's stability and design, maritime education and training, and improving maritime traffic environment. Statistics analysis on marine casualties showed that most of casualties occurred in coastal waters, especially by human elements. In order to review the conformity of existing prevention measures with the result of the statistics analysis, the IMO's SHELL model was applied to the established measures. As a result, ergonomic approaches were needed for the prevention of human errors in coastal waters, so that the priority should be given to the interface between ship's operator and navigational environment. For this study, Rasmussen's SRK pyramid, which showed decision making mechanism of human, and the US Coast Guard's investigation manual on marine casualties concerning the collapse of safe maritime transportation system were reviewed, and the merits and demerits within the risk assessment tools such as IWRAP, PAWSA, ES model, PARK model, and NURI model were also studied. Although the effectiveness of the existing risk assessment models was proved in ports and approaching channels, it is concluded that the need of new models for converting Korean seafarers' qualitative risk to quantitative risk was proposed so as to print hazard maps which make seafarers instinctively recognize comparative hazard levels of coastal waters.

Assessment of Flood Vulnerability to Climate Change Using Fuzzy Model and GIS in Seoul (퍼지모형과 GIS를 활용한 기후변화 홍수취약성 평가 - 서울시 사례를 중심으로 -)

  • Kang, Jung-Eun;Lee, Moung-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.119-136
    • /
    • 2012
  • The goal of this study is to apply the IPCC(Intergovernmental Panel on Climate Change) concept of vulnerability to climate change and verify the use of a combination of vulnerability index and fuzzy logic to flood vulnerability analysis and mapping in Seoul using GIS. In order to achieve this goal, this study identified indicators influencing floods based on literature review. We include indicators of exposure to climate(daily max rainfall, days of 80mm over), sensitivity(slope, geological, average DEM, impermeability layer, topography and drainage), and adaptive capacity(retarding basin and green-infra). Also, this research used fuzzy model for aggregating indicators, and utilized frequency ratio to decide fuzzy membership values. Results show that the number of days of precipitation above 80mm, the distance from river and impervious surface have comparatively strong influence on flood damage. Furthermore, when precipitation is over 269mm, areas with scare flood mitigation capacities, industrial land use, elevation of 16~20m, within 50m distance from rivers are quite vulnerable to floods. Yeongdeungpo-gu, Yongsan-gu, Mapo-gu include comparatively large vulnerable areas. This study improved previous flood vulnerability assessment methodology by adopting fuzzy model. Also, vulnerability map provides meaningful information for decision makers regarding priority areas for implementing flood mitigation policies.

Locational Decision of the Viewpoint Using GIS and Space Syntax (공간구문론과 GIS를 이용한 조망점 위치결정)

  • Choi, Chul-Hyun;Jung, Sung-Kwan;Lee, Woo-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.2
    • /
    • pp.53-68
    • /
    • 2011
  • A selection of viewpoint is a first priority for landscape evaluation. However, it has been artificially carried out by a subjective method without of criterion. Therefore, this study proposed the objective and quantitative viewpoint selection methods using space syntax and GIS. For this, the study area on samduk3 residential improvement district located at Daegu city was divided into 24 sectors of visibility zone by distance and direction. After that, the preliminary viewpoints equally distributed in space were selected by axial map analysis of space syntax and viewshed-frequency analysis of GIS. According to the result of selection of the final viewpoints using the VEI(Viewpoint Evaluation Index), all the final viewpoints were placed in the National Debt Repayment Movement; VEI value of VP-2 was 112.63 in the foreground, VP-10 was 18.31 in the middleground and VP-18 was 5.55 in the background. Selected viewpoints were verified as a big changing of landscape variation and high chance of view such as the public area, the park and the high-density residential area. Thus, VEI will be used as a quantitative method of selecting viewpoints and it is expected to be able to use as the objective indicator.

Application of Photo-realistic Modeling and Visualization Using Digital Image Data in 3D GIS (디지털 영상자료를 이용한 3D GIS의 사실적 모델링 및 가시화)

  • Jung, Sung-Heuk;Lee, Jae-Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.73-83
    • /
    • 2008
  • For spatial analysis and decision-making based on territorial and urban information, technologies on 3D GIS with digital image data and photo-realistic 3D image models to visualize 3D modeling are being rapidly developed. Currently, satellite images, aerial images and aerial LiDAR data are mostly used to build 3D models and textures from oblique aerial photographs or terrestrial photographs are used to create 3D image models. However, we are in need of quality 3D image models as current models cannot express topographic and features most elaborately and realistically. Thus, this study analyzed techniques to use aerial photographs, aerial LiDAR, terrestrial photographs and terrestrial LiDAR to create a 3D image model with artificial features and special topographic that emphasize spatial accuracy, delicate depiction and photo-realistic imaging. A 3D image model with spatial accuracy and photographic texture was built to be served via 3D image map services systems on the Internet. As it was necessary to consider intended use and display scale when building 3D image models, in this study, we applied the concept of LoD(Level of Detail) to define 3D image model of buildings in five levels and established the models by following the levels.

Spatial Conservation Prioritization Considering Development Impacts and Habitat Suitability of Endangered Species (개발영향과 멸종위기종의 서식적합성을 고려한 보전 우선순위 선정)

  • Mo, Yongwon
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.2
    • /
    • pp.193-203
    • /
    • 2021
  • As endangered species are gradually increasing due to land development by humans, it is essential to secure sufficient protected areas (PAs) proactively. Therefore, this study checked priority conservation areas to select candidate PAs when considering the impact of land development. We determined the conservation priorities by analyzing four scenarios based on existing conservation areas and reflecting the development impact using MARXAN, the decision-making support software for the conservation plan. The development impact was derived using the developed area ratio, population density, road network system, and traffic volume. The conservation areas of endangered species were derived using the data of the appearance points of birds, mammals, and herptiles from the 3rd National Ecosystem Survey. These two factors were used as input data to map conservation priority areas with the machine learning-based optimization methodology. The result identified many non-PAs areas that were expected to play an important role conserving endangered species. When considering the land development impact, it was found that the areas with priority for conservation were fragmented. Even when both the development impact and existing PAs were considered, the priority was higher in areas from the current PAs because many road developments had already been completed around the current PAs. Therefore, it is necessary to consider areas other than the current PAs to protect endangered species and seek alternative measures to fragmented conservation priority areas.

A Study of Ground Subsidence Risk Grade Analysis Based on Correlation Between the Underground Utility Structure Density and Recorded Ground Subsidence (지중매설물 밀집도와 이력지반함몰의 상관성 분석을 통한 위험도 등급 분석 기법에 관한 연구)

  • Choi, Changho;Kim, Jin-Young;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.69-77
    • /
    • 2022
  • Several studies have been conducted to analyze the risk of ground subsidence occurring in urban areas. Recently, the correlation between the density of underground utilities (i.e., the quantity of buried utilities in the analysis area) and the recorded ground subsidence has been explored to analyze such risk through. Choi et al. (2021) proposed an algorithm to optimize the correlation between the ground subsidence and normalized linear density of underground pipelines. In this study, the optimization algorithm was modified for analysis based on the risk grade. The analysis results using the modified optimization algorithm were compared with the correlation analysis results between the density of underground utilities and recorded ground subsidence presented by Choi et al. (2021). Compared with Choi et al. (2021), three analysis results showed equal or higher accuracy in the correlation analysis with recorded ground subsidence according to risk grade. In particular, for R100, it was divided into five grades and compared with the ratio of the recorded ground subsidence that occurred in grades 4 or higher. As a result, Choi et al. (2021) showed that 86% of recorded ground subsidence occurred in grades 4 or higher, whereas this study showed 93%. It was confirmed that the accuracy of the modified optimization algorithm was improved. The modified optimization algorithm can be applied to develop a ground subsidence risk map for each grade in an urban area, which can be used as basic data for decision-making for underground utility maintenance.

Static Identification of Firmware Linux Kernel Version by using Symbol Table (심볼 테이블을 이용한 펌웨어 리눅스 커널 버전 정적 식별 기법)

  • Kim, Kwang-jun;Cho, Yeo-jeong;Kim, Yun-jeong;Lee, Man-hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.1
    • /
    • pp.67-75
    • /
    • 2022
  • When acquiring a product having an OS, it is very important to identify the exact kernel version of the OS. This is because the product's administrator needs to keep checking whether a new vulnerability is found in the kernel version. Also, if there is an acquisition requirement for exclusion or inclusion of a specific kernel version, the kernel identification becomes critical to the acquisition decision. In the case of the Linux kernel used in various equipment, sometimes it becomes difficult to pinpoint the device's exact version. The reason is that many manufacturers often modify the kernel to produce their own firmware optimized for their device. Furthermore, if a kernel patch is applied to the modified kernel, it will be very different from its base kernel. Therefore, it is hard to identify the Linux kernel accurately by simple methods such as a specific file existence test. In this paper, we propose a static method to classify a specific kernel version by analyzing function names stored in the symbol table. In an experiment with 100 Linux devices, we correctly identified the Linux kernel version with 99% accuracy.

Seismic Zonation on Site Responses in Daejeon by Building Geotechnical Information System Based on Spatial GIS Framework (공간 GIS 기반의 지반 정보 시스템 구축을 통한 대전 지역의 부지 응답에 따른 지진재해 구역화)

  • Sun, Chang-Guk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.5-19
    • /
    • 2009
  • Most of earthquake-induced geotechnical hazards have been caused by the site effects relating to the amplification of ground motion, which is strongly influenced by the local geologic conditions such as soil thickness or bedrock depth and soil stiffness. In this study, an integrated GIS-based information system for geotechnical data, called geotechnical information system (GTIS), was constructed to establish a regional counterplan against earthquake-induced hazards at an urban area of Daejeon, which is represented as a hub of research and development in Korea. To build the GTIS for the area concerned, pre-existing geotechnical data collections were performed across the extended area including the study area and site visits were additionally carried out to acquire surface geo-knowledge data. For practical application of the GTIS used to estimate the site effects at the area concerned, seismic zoning map of the site period was created and presented as regional synthetic strategy for earthquake-induced hazards prediction. In addition, seismic zonation for site classification according to the spatial distribution of the site period was also performed to determine the site amplification coefficients for seismic design and seismic performance evaluation at any site in the study area. Based on this case study on seismic zonations in Daejeon, it was verified that the GIS-based GTIS was very useful for the regional prediction of seismic hazards and also the decision support for seismic hazard mitigation.

A Study on Types and Characteristics of 'Cultural Landscapes' with Big Data Analysis: Focusing on the Case of Shinan-gun, Jeollanam-do (빅데이터 분석을 통한 '문화경관' 유형과 특성 연구: 전라남도 신안군 사례를 중심으로)

  • OH Jungshim
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.1
    • /
    • pp.162-180
    • /
    • 2023
  • The World Heritage Committee decided to make "cultural landscapes" a world heritage category in the 16th Session of the UNESCO General Conference. The decision was made from a recognition of the importance of interactions between human beings and the natural environment or between cultural heritage and natural heritage. Many countries have created policies and institutions to protect their own cultural landscapes along with the changing times. Korea, however, has not obviously defined the concepts and categories of its cultural landscapes, but manages policies and institutions based on the concept of a scenic spot, which has some similar meanings. In addition, it even borrows the "list of landscape adjectives," one of the representative methods for managing landscapes, from foreign countries. With this background, this paper suggested how to define cultural landscapes according to the global development flow. It created a list of cultural landscape adjectives by gathering the adjectives that can properly express local cultural landscapes in Korea. In particular, it collected 4,556 articles from a local newspaper by focusing on the case of Shinan-gun, Jeollanam-do, and analyzed key words and adjectives included in them by using big data analysis. The results suggested by this paper, such as the "classification table of cultural landscape types," "list of cultural landscape adjectives" and "network map of nouns/adjectives" can be applied to research on other localities, and furthermore, used as basic data for finding and protecting the characteristics of local cultural landscapes in Korea.

A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network (사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크)

  • Hwang, Yousub
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.43-57
    • /
    • 2012
  • To enhance the competitive advantage in a constantly changing business environment, an enterprise management must make the right decision in many business activities based on both internal and external information. Thus, providing accurate information plays a prominent role in management's decision making. Intuitively, historical data can provide a feasible estimate through the forecasting models. Therefore, if the service department can estimate the service quantity for the next period, the service department can then effectively control the inventory of service related resources such as human, parts, and other facilities. In addition, the production department can make load map for improving its product quality. Therefore, obtaining an accurate service forecast most likely appears to be critical to manufacturing companies. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average simulation. However, these methods are only efficient for data with are seasonal or cyclical. If the data are influenced by the special characteristics of product, they are not feasible. In our research, we propose a forecasting framework that predicts service demand of manufacturing organization by combining Case-based reasoning (CBR) and leveraging an unsupervised artificial neural network based clustering analysis (i.e., Self-Organizing Maps; SOM). We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the service forecasting domain. Our proposed approach has several appealing features : (1) We applied CBR and SOM in a new forecasting domain such as service demand forecasting. (2) We proposed our combined approach between CBR and SOM in order to overcome limitations of traditional statistical forecasting methods and We have developed a service forecasting tool based on the proposed approach using an unsupervised artificial neural network and Case-based reasoning. In this research, we conducted an empirical study on a real digital TV manufacturer (i.e., Company A). In addition, we have empirically evaluated the proposed approach and tool using real sales and service related data from digital TV manufacturer. In our empirical experiments, we intend to explore the performance of our proposed service forecasting framework when compared to the performances predicted by other two service forecasting methods; one is traditional CBR based forecasting model and the other is the existing service forecasting model used by Company A. We ran each service forecasting 144 times; each time, input data were randomly sampled for each service forecasting framework. To evaluate accuracy of forecasting results, we used Mean Absolute Percentage Error (MAPE) as primary performance measure in our experiments. We conducted one-way ANOVA test with the 144 measurements of MAPE for three different service forecasting approaches. For example, the F-ratio of MAPE for three different service forecasting approaches is 67.25 and the p-value is 0.000. This means that the difference between the MAPE of the three different service forecasting approaches is significant at the level of 0.000. Since there is a significant difference among the different service forecasting approaches, we conducted Tukey's HSD post hoc test to determine exactly which means of MAPE are significantly different from which other ones. In terms of MAPE, Tukey's HSD post hoc test grouped the three different service forecasting approaches into three different subsets in the following order: our proposed approach > traditional CBR-based service forecasting approach > the existing forecasting approach used by Company A. Consequently, our empirical experiments show that our proposed approach outperformed the traditional CBR based forecasting model and the existing service forecasting model used by Company A. The rest of this paper is organized as follows. Section 2 provides some research background information such as summary of CBR and SOM. Section 3 presents a hybrid service forecasting framework based on Case-based Reasoning and Self-Organizing Maps, while the empirical evaluation results are summarized in Section 4. Conclusion and future research directions are finally discussed in Section 5.