• Title/Summary/Keyword: debris flow analysis

Search Result 195, Processing Time 0.03 seconds

CFD analysis of the flow blockage in a rectangular fuel assembly of the IAEA 10 MW MTR research reactor

  • Xia, Shuang;Zhou, Xuhua;Hu, Gaojie;Cao, Xiaxin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2847-2858
    • /
    • 2021
  • When a nuclear reactor with rectangular fuel assemblies runs for a long time, impurities and debris may be taken into coolant channels, which may cause flow blockage, and the blocked fuel assemblies might be destroyed. Therefore, the purpose of this study is to perform a thermal-hydraulic analysis of a rectangular fuel assembly by STAR-CCM+, under the condition of one subchannel with 80% blockage ratio. A rectangular fuel assembly of the International Atomic Energy Agency (IAEA) 10 MW material test reactor (MTR) is chosen. In view of the gasket material taken into the coolant channel is close to the single side of the coolant channel, in the flow blockage accident of the Oak Ridge Research Reactor (ORRR), a new blockage category called single side blockage is attempted. The blockage positions include inlet, middle and outlet, and the blockage is set as a cuboid. It is found by simulations that the blockage redistributes the mass flow rate, and large vortices appear locally. The peak temperature of the cladding is maximum, when the blockage is located at the single side of the coolant channel inlet, and no boiling occurs in all blockage cases. Moreover, as the height of the blockage increases, the damage caused by the blockage increases slightly.

Disaster Prevention Planning through Analysis of Debris Flow Vulnerability Based on Mountain Basin Features (산지유역 기반의 토석류 취약성 분석을 통한 재해방지 계획수립 연구)

  • Kim, Man-Il;Lee, Moon-Se;Hong, Kwan-Pyo
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.393-403
    • /
    • 2017
  • Mountain disasters in Korea have caused massive social and economic damage. During the period 2005-2014 there has been an annual average of 7 deaths and disaster recovery costs of 79.8 billion won in the country's 4393 ha of mountainous areas. The primary mountain disasters are landslides on mountain slopes, and secondary debris flows can spread along mountain streams, damaging facilities and settlements in lower areas. Typhoons and local rainfall can cause such disasters, while anthropogenic factors include development that damages the mountainous terrain. The study area was divided into three basins. For each basin, a debris flow vulnerability assessment method was proposed considering FLO-2D analysis results and the local topography, geology, and forestation. To establish an in situ investigation, analysis, and evaluation plan for potential mountain disasters, we selected mountain basins that are potentially vulnerable to mountain disasters through analysis of their mountain slopes and streams. This work suggests the establishment of a comprehensive plan for disaster prevention based on a mountain basin feature.

Landslide Types and Susceptibilities Related to Geomorphic Characteristics - Yeonchon-Chulwon Area - (지형특성에 따른 산사태의 유형 및 취약성 - 연천-철원지역을 대상으로 -)

  • 김원영;이사로;김경수;채병곤
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.115-130
    • /
    • 1998
  • An analysis on landslide types and susceptibilities associated with geomorphic characteristics has been conducted with 916 landslide inventories in Yeonchon-Chulwon District, where two day's heavy rainfall was concentrated on July, 1996. The precipitation during the 2 days, which is equivalent to 0.372 of event cofficient, can cause large landslides based on Olivier's equation. Sliding materials are dominantly composed of debris mixed with rock fragments and soil derived from colluvium and residual soils. 66% of the landslides are belong to debris flow md 23% are due to sediments flow, in accordance with the classification of sliding materials. Most of landslides(> 90%) are small and shallow, less than l00m in length and about 1m in depth, and classified as transitional type. Granite is more susceptible as much as 4.7 times than metamorphic rocks and 2.7 times than volcanic rocks, probably due to higher weathering grade of granite. The highest landslide frequency is concentrated on the areas between 200 and 300m in height and on the slopes between $10-20^{\circ}$ in dgree. More than 50% of landslides occurred under these geomorphic conditions. Consequently, colluviums and residual soils distributed on the gentle slopes are most susceptible to the landslides of the area.

  • PDF

Geomorphological Processes of Yuga Alluvial Fan in Korea (유가 선상지의 지형 형성과정)

  • Lee, Gwang-Ryul;Cho, Young Dong
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.2
    • /
    • pp.204-217
    • /
    • 2013
  • This study shows the geomorphological processes of Yuga alluvial fan at Dalseong-gun, Daegu in Korea, based on characteristics of geomorphological surfaces, analysis of geomorphological deposits and OSL age dating. Alluvial fans of this area are classified into three surfaces(YG-F1, YG-F2, YG-F3) and were formed by the depositional processes resulting from the changes in hydraulic geometry of flowing water which was a stream flowing out of mountains debouched on to a plain, not by a sudden decrease in surface gradient of river bed. YG-F3 surface, about 110,000 yr B.P.(MIS 5.4), was formed as Yongri river deposited a lot of debris. This result was due to the process that the deposition took place actively with the upward of base level as the last interglacial period began. Later, the denudation of the river valley and geomorphological surface constantly occurred and the local and seasonal changes were found in precipitation and stream discharge with the beginning of the interstadial of the last glacial stages(MIS 3), leading to YG-F2 formed by debris flow, earth flow, mud flow and stream flow. Then, short-term climate changes and temporal climate events repeatedly caused aggradation and denudation over time and going through these processes, YG-F1 is believed to have been made by earth flow or mudflow during the last glacial maximum(MIS 2).

  • PDF

Numerical Simulation of Subaerial and Submarine Landslides Using the Finite Volume Method in the Shallow Water Equations with (b, s) Coordinate ((b, s) 좌표로 표현된 천수방정식에 유한체적법을 사용하여 해상 및 해저 산사태 수치모의)

  • Pham, Van Khoi;Lee, Changhoon;Vu, Van Nghi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.4
    • /
    • pp.229-239
    • /
    • 2019
  • A model of landslides is developed using the shallow water equations to simulate time-dependent performance of landslides. The shallow water equations are derived using the (b, s) coordinate system which can be applied in both river and ocean. The finite volume scheme employing the HLL approximate Riemann solver and the total variation diminishing (TVD) limiter is applied to deal with the numerical discontinuities occurring in landslides. For dam-break water flow and debris flow, numerical results are compared with analytical solutions and experimental data and good agreements are observed. The developed landslide model is successfully applied to predict subaerial and submarine landslides. It is found that the subaerial landslide propagates faster than the submarine landslide and the speed of propagation becomes faster with steeper bottom slope and less bottom roughness.

Estimation of gas-hydrate concentrations from amplitude variation with offset (AVO) analysis of gas-hydrate BSRs in the Ulleung Basin, East Sea (동해 울릉분지 해저 모방 반사면의 AVO 분석을 통한 가스하이드레이트 농도 예측)

  • Yi, Bo-Yeon;Lee, Gwang-Hoon;Ryu, Byong-Jae;Yoo, Dong-Geun;Chung, Bu-Heung;Kang, Nyeon-Keon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.676-679
    • /
    • 2009
  • The bottom-simulating reflector (BSR) is the most commonly observed seismic indicator of gas hydrate in the Ulleung Basin, East Sea. We processed ten representative seismic reflection profiles, selected from a large data set, for amplitude variation with offset (AVO) analysis of the BSR to estimate gas-hydrate concentrations. First, BSRs were divided into five groups based on their seismic amplitudes and associated sediment types: (1) very high-amplitude BSRs in turbidite/hemipelagic sediments, (2) high-amplitude BSRs in debris-flow deposits, (3) moderate-amplitude BSRs in turbidite/hemipelagic sediments, (4) very low-amplitude BSRs in debris-flow deposits, and (5) very low-amplitude BSRs in seismic chimneys. The AVO responses of the group 1 and 3 BSRs are characterized by a rapid decrease and a relatively slow decrease in magnitude with offset, respectively. The AVO response of the group 2 BSR is characterized by a relatively slow increase in magnitude with offset. The AVO responses of the groups 4 and 5 BSRs are characterized by a flat AVO with very small zero-offset amplitude. Theoretical AVO curves, based on the three-phase Biot theory, suggest that the group 1 and 3 BSRs may be related to high (> 40%) concentrations of gas hydrate whereas the group 2 BSRs may indicate low (< 20%) concentrations of gas hydrate. The AVO responses of the group 4 and 5 BSRs cannot be compared with the theoretical models because of their very small zero-offset amplitudes. The comparison of the AVO response of the BSR at the UBGH-04 well with theoretical models suggests about 10% gas-hydrate concentration above the gas-hydrate stability zone.

  • PDF

Analysis of the potential landslide hazard after wildfire considering compound disaster effect (복합재해 영향을 고려한 산불 후 산사태 잠재적 피해 위험도 분석)

  • Lee, Jong-Ook;Lee, Dong-Kun;Song, Young-Il
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.1
    • /
    • pp.33-45
    • /
    • 2019
  • Compound disaster is the type that increases the impact affected by two or more hazard events, and attention to compound disaster and multi-hazards risk is growing due to potential damages which are difficult to predict. The objective of this study is to analyze the possible impacts of post-fire landslide scenario quantitatively by using TRIGRS (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis), a physics-based landslide model. In the case of wildfire, soil organic material and density are altered, and saturated hydraulic conductivity decrease because of soil exposed to high temperature. We have included the change of soil saturated hydraulic conductivity into the TRIGRS model through literature review. For a case study, we selected the area of $8km^2$ in Pyeongchang County. The landslide modeling process was calibrated before simulate the post-wildfire impact based on landslide inventory data to reduce uncertainty. As a result, the mean of the total factor of safety values in the case of landslide was 2.641 when rainfall duration is 1 hour with rainfall intensity of 100mm per day, while the mean value for the case of post-wildfire landslide was lower to 2.579, showing potential landslide occurrence areas appear more quickly in the compound disaster scenario. This study can be used to prevent potential losses caused by the compound disaster such as post-wildfire debris flow or landslides.

2-D Analysis of the Low Flow Variation Around the Bridge Pier (교각 주변의 저수류 (低水流) 흐름 변화에 대한 2차원 분석)

  • Yeon, In-Sung;Lee, Jai-Kyung;Yeon, Gyu-Bang
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.91-97
    • /
    • 2009
  • The flow is changed by the structure which goes across the river. The structure with debris causes high water level and overflow. The changed flow, which caused by pier and stream characteristics like velocity and slope, was analysed by 2D model. After rainfall, the influences of increased discharge were evaluated. Velocity was simulated in the channel by SMS (Surface water Modeling System) using RMA2, and high velocity values were found in the steep and narrow reach. Highest velocity value around piers was showed in the middle of space between two piers. The increased discharge due to rainfall increases velocity and changes flow contour considerably.

3-D Slope Stability Analysis on Influence of Groundwater Level Changes in Oksan Landslide Area (지하수위 변화에 따른 옥산 산사태 지역의 3차원 사면안정성 해석)

  • Seo, Yong-Seok;Kim, Sung-Kwon;Lee, Kyoung-Mi
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.177-183
    • /
    • 2008
  • In the study, we carried out a 3-D analysis to assess the influence of groundwater level changes on the slope stability, conducting a series of back-numerical analysis to delineate the critical line of the shear strength of the failure surface of a landslide, and a laboratory test to determine the geo-mechanical properties of soil samples. The analysis result shows that the shear strength determined by the laboratory test was distributed below the critical line of shear strength estimated by back-analysis. Differences between driving and resisting force were also analyzed in groundwater conditions of dry and saturation. It appeared that the stress gets greater towards the slope center of the landslide, and the debris mass moves downwards. According to the analysis, the factor of safety becomes 1 with the rise of foundwater level up to -0.85 m from the slope surface, while the slope tends to stay stable during dry seasons.

Counter-Current Flow Limit in Narrow Gap (간극에서의 역방향 유동 제한 현상 연구)

  • Kim, Yong-Hoon;Suh, Kune-Y.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1054-1060
    • /
    • 1998
  • Previous counter-current flow limitation (CCFL) and critical heat flux (CHF) studies included investigations on the inlet entrance, inclined channel and gap effects for the most part. In this study, the local CHF correlation was presented to be used in the numerical analysis for the 3 dimensional hemispherical geometry. Also, first-principle analyses were performed to determine the maximum heat removal capability from the debris through the gap that may be formed during a core melt accident. The maximum heat removal capability by gap cooling can be applied in quantitatively assessing the severe accident management measures.

  • PDF