• 제목/요약/키워드: debonding

검색결과 493건 처리시간 0.031초

Multiple Cracking Model of Fiber Reinforced High Performance Cementitious Composites under Uniaxial Tension

  • Wu, Xiangguo;Han, Sang-Mook
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권1호
    • /
    • pp.71-77
    • /
    • 2009
  • A theoretical model of multiple cracking failure mechanism is proposed herein for fiber reinforced high performance Cementitious composites. By introducing partial debonding energy dissipation on non-first cracking plane and fiber reinforcing parameter, the failure mechanism model of multiple cracking is established based on the equilibrium assumption of total energy dissipation on the first crack plane and non-first cracking plane. Based on the assumption of the first crack to be the final failure crack, energy dissipation terms including complete debonding energy, partial debonding energy, strain energy of steel fiber, frictional energy, and matrix fracture energy have been modified and simplified. By comparing multiple cracking number and energy dissipations with experiment results of the reference's data, it indicates that this model can describe the multiple cracking behavior of fiber reinforced high performance cementitious composites and the influence of the partial debonding term on energy dissipation is significant. The model proposed may lay a foundation for the predictions of the first cracking capacity and post cracking capacity of fiber reinforced high performance cementitious composites and also can be a reference for optimal mixture for construction cost.

Experimental study on RC beams externally bonded by CFRP sheets with and without end self-locking

  • Chaoyang Zhou;Yanan Yu;Chengfeng Zhou;Xuejun He;Yi Wang
    • Steel and Composite Structures
    • /
    • 제48권5호
    • /
    • pp.599-610
    • /
    • 2023
  • To avoid debonding failure, a novel type of hybrid anchorage (HA) is proposed in this study that uses a slotted plate to lock the ends of the fiber-reinforced polymer (FRP) sheet in addition to the usual bonding over the substrate of the strengthened member. An experimental investigation was performed on three groups of RC beams, which differed from one another in either concrete strength or steel reinforcement ratio. The test results indicate that the end self-locking of the CFRP sheet can improve the failure ductility, ultimate capacity of the beams and its utilization ratio. Although intermediate debonding occurred in all the strengthened beams, it was not a fatal mode of failure for the three specimens with end anchorage. Among them, FRP rupture occurred in the beam with higher concrete strength and lower steel reinforcement ratio, whereas the other two failed by concrete crushing. The beam strengthened by HA obtained a relatively high percentage of increase in ultimate capacity when the rebar ratio or concrete strength decreased. The expressions in the literature were inspected to calculate the critical loads at intermediate debonding, FRP rupturing and concrete crushing after debonding for the strengthened beam. Then, the necessity of further research is addressed.

Simulation study on CFRP strengthened reinforced concrete beam under four-point bending

  • Zhang, Dongliang;Wang, Qingyuan;Dong, Jiangfeng
    • Computers and Concrete
    • /
    • 제17권3호
    • /
    • pp.407-421
    • /
    • 2016
  • This paper presents numerical modeling of the structural behavior of CFRP (carbon fiber reinforced polymer) strengthened RC (reinforced concrete) beams under four-point bending. Simulation of debonding at the CFRP-concrete interface was focused, as it is the main failure mode of CFRP strengthened RC beams. Here, cohesive layer was employed to model the onset of debonding, which further helps to describe the post debonding behavior of the CFRP strengthened RC beam. In addition, the XFEM approach was applied to investigate the effects of crack localization on strain field on CFRP sheet and rebar. The strains obtained from the XFEM correlate better to the test results than that from CDP (concrete damaged plasticity) model. However, there is a large discrepancy between the experimental and simulated loaddisplacement relationships, which is due to the simplification of concrete constitutive law.

Hybrid 복합재료 보강 철근콘크리트 보의 광섬유센서를 이용한 부착파괴 모니터링 (Monitoring of Debonding Failure of Reinforced Concrete(RC) Beams Retrofitted with Hybrid Composites by Optical FBG Sensor)

  • 김기수;김종우;조윤범;민정현;신영수;정철
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.208-211
    • /
    • 2002
  • In RC beams strengthened with Epoxy-Bonded Fiber, debonding failure happens frequently. Moreover, through the life cycle, it is difficult to recognize clacks and deflections on the surface of concrete members strengthened with Epoxy- Bonded Fiber. For these reasons, we must always monitor the state of RC beams. The Optical FBG sensor is broadly accepted as a structural health monitoring device. The main objective of this paper is that it's possible to monitoring the debonding failure of R.C. beams strengthened with Epoxy-Bonded Fiber. For that, we fixed two Optical FBG sensors at the center of the beam and another two sensors in the end of Epoxy-Bonded Fiber, According to the comparison micro-strain between embeded sensor in concrete and that on the fiber surface, we can find the point which debonding failure occurs

  • PDF

횡방향 등방성을 고려한 단섬유 인장 실험 모델링 (Modeling of Single Fiber Pull-Out Experiment Considering the Effects of Transverse Isotropy)

  • 설일찬;이춘열;채영석
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1384-1392
    • /
    • 2002
  • Single fiber pull-out technique has been commonly used to characterize the mechanical behavior of interface in fiber reinforced composite materials. An improved analysis considering the effects of transversely isotropic properties of fiber and the effects of thermal residual stresses in both radial and axial directions along the fiber/matrix interface is developed for the single fiber pull-out test. Although the stress transfer properties across the interface is not much affected by considering the transversely isotropic properties of fiber, interfacial debonding is notably encouraged by the effect. The interfacial shear stress that plays an important role in interfacial debonding is very much affected by the component of axial thermal residual stress in the bonded region, which can induce a two-way debonding mechanism.

Bonding and debonding behavior of FRP sheets under fatigue loading

  • Iwashita, Kentaro;Wu, Zhishen;Ishikawa, Takashi;Hamaguchi, Yasumasa;Suzuki, Toshio
    • Advanced Composite Materials
    • /
    • 제16권1호
    • /
    • pp.31-44
    • /
    • 2007
  • The purpose of this study is to improve the examining and understanding of the bonding behavior of Fiber Reinforced Polymer (FRP) sheets bonded to concrete blocks and steel plates under fatigue loading. First, a series of experimental investigations is summarized in the paper. The fatigue behavior of bonding surface between FRP sheets and concrete is finally characterized by the conducted P-S-N diagram representing the relationship among the probability of FRP debonding (P), the bond stress amplitudes (S), and the number of cycles (N) at debonding on a semi-logarithmic scale. The different debonding modes for various fracturing surface are also investigated and evaluated.

전기해체 접착제 (A review on electrically debonding Adhesives)

  • 정종구
    • 접착 및 계면
    • /
    • 제19권2호
    • /
    • pp.84-94
    • /
    • 2018
  • Electrically debonding adhesives[EDA], one of the controlled delamination materials[CDM] is reviewed. CDM can be defined as the ability to separate adhesive bonded assemblies without causing damage to the substrates. Its application includes electronics, medical surgery, dentistry, building and general manufacturing where the opportunity to separate assemblies is important. There are several important mechanisms of EDAs; faradaic reaction, phase separation and anode detachment, cathodic debonding, gas emission mechanism, and mechanical stresses. These mechanisms are reviewed with various research results. Since the mechanism behind the electrochemical debonding of adhesives is not well understood, this review aims to help the research scientists in the industries. Finally, new applications of EDA are introduced as new business opportunity.

CLAD강의 DEBONDING 현상에 대한 연구(1) -열처리에 의한 clad강 계면의 강도 약화- (A Study on the Debonding Phenomena of Clad Steel(1) -Deterioration of Interfacial Strength in Clad Steel by Thermal Treatment-)

  • 윤중근;김희진
    • Journal of Welding and Joining
    • /
    • 제5권3호
    • /
    • pp.28-37
    • /
    • 1987
  • To clarify the debonding phenomena of clad steel, the effect of thermal treatment (temperature, holding time) on the interfacial strength of clad steel was preliminarily investigated. From this study, it was confirmed that the interfacial strength of clad steel was deteriorated by thermal treatment and the amount of strength deteriorated, depending on the condition of thermal treatment, could be evaluated by the following equation. ${\sigma}_{ HT}/{\sigma}_{i}/=A_{0}-A\;exp(-Q/RT)log(t/t_{0})$ This equation implies that temperature has a far strong effect on strength deterioration than tiem. The deterioration of interfacial strength of clad steel after thermal treatment may be derived from the thermal stress caused by the difference in thermal expansion coefficient between component materials and microstructural change along the interface.

  • PDF

Patch Plate Repair Method for Steel Structures Combining Adhesives and Stud Bolts

  • Ishikawa, T.;Ikeda, T.
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1410-1419
    • /
    • 2018
  • Recently, a repair method by bonding patch plates is being applied to corroded steel structures. However, one of the issues of patch plate bonding repair is the brittle debonding of the patch plates. Generally, when the delamination of the patch plates occurs, the composite effect acting between the steel members and patch plates abruptly decreases. Therefore, to prevent the brittle debonding of the patch plates, a repair method combining an adhesive and stud bolts is proposed. Till date, tensile and compressive tests have been performed for the proposed method. In this study, plate bending tests were conducted to verify the effectiveness of this method under bending conditions. Furthermore, two types of epoxy resin-based adhesives were prepared to evaluate the effectiveness of the proposed method with different adhesive properties. The test results show that the proposed method is able to prevent the brittle debonding of the patch plates in the case of both epoxy resins.

혼합유한요소를 통한 다공질매체의 요소분리해석 (Analysis of Debonding between Mixed Finite Elements for Saturated Porous Media)

  • 탁문호;이장근;반호기;강재모
    • 한국지반환경공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.53-58
    • /
    • 2017
  • 본 연구에서는 ABAQUS(2014)를 이용한 다공질 매체의 혼합유한요소해석에서 요소 간의 분리를 모사할 수 있는 방법을 제안한다. ABAQUS에서는 변위과 간극수압(u-p모델)의 자유도를 갖는 혼합유한요소의 분리를 standard(implicit) 버전 상에서 cohesive element와 함께 해석을 제안하지만, 요소 간의 이탈, 강체운동, 접촉 등과 같은 분리현상에 대해서는 경계조건 문제로 수치 해석상 한계가 있다. ABAQUS-explicit 해석에서는 경계조건 문제에 대해 자유롭지만 지금까지의 혼합요소 간의 분리를 제공하고 있지 않다. 그러므로, 본 연구에서는 ABAQUS-explicit 상에서 u-p 모델에 대한 분리를 모사할 수 있는 새로운 접근방법이 제안된다. VUMAT 서브루틴을 통하여 구성모델이 적용되고, 간극수압 변화에 따른 요소의 분리 조건을 판단한다. 그리고 VDISP 서브루틴을 통하여 요소의 분리를 발생시킨다. 이렇게 제안된 알고리즘은 간단한 2차원 다공질 매체 예제를 통하여 구현된다.