• 제목/요약/키워드: dead reckoning position

검색결과 110건 처리시간 0.022초

Development of a CSGPS/DR Integrated System for High-precision Trajectory Estimation for the Purpose of Vehicle Navigation

  • Yoo, Sang-Hoon;Lim, Jeong-Min;Oh, Jeong-Hun;Kim, Ho-Beom;Lee, Kwang-Eog;Sung, Tae-Kyung
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권3호
    • /
    • pp.123-130
    • /
    • 2015
  • In this study, a carrier smoothed global positioning system / dead reckoning (CSGPS/DR) integrated system for high-precision trajectory estimation for the purpose of vehicle navigation was proposed. Existing code-based GPS has a low position accuracy, and carrier-phase differential global positioning system (CPDGPS) has a long waiting time for high-precision positioning and has a problem of high cost due to the establishment of infrastructure. To resolve this, the continuity of a trajectory was guaranteed by integrating CSGPS and DR. The results of the experiment indicated that the trajectory precision of the code-based GPS showed an error performance of more than 30cm, while that of the CSGPS/DR integrated system showed an error performance of less than 10cm. Based on this, it was found that the trajectory precision of the proposed CSGPS/DR integrated system is superior to that of the code-based GPS.

Beacon System과 Encoder를 이용한 Omniwheel 연마 로봇의 주행 제어 (Driving Control of an Omniwheel a Polishing Robot Using Beacon System and Encoder)

  • 송준우;최병찬;김태언;스리지드;이장명
    • 대한임베디드공학회논문지
    • /
    • 제12권4호
    • /
    • pp.213-221
    • /
    • 2017
  • Utilizing the existing polishing robot prevents unrestricted change of direction, driving, and identification of driving pathway. To overcome this barrier, driving mechaism has been designed with Omniwheels with encoders and RSSI method of beacon system has been utilized to identify the driving path by position recognition. Due to the wheel characteristics, the Omniwheel mobile robot generates greater slip than the conventional mobile robot, which reduces its driving accuracy. Therefore, to improve the driving accuracy, the localization is conducted through the fusion of encoder and RSSI of beacon data to compensate for the errors caused by Dead Reckoning and inaccuracy of sensors. Finally, the localization accuracies of the proposed and conventional indoor localization method are compared to show effectiveness of the proposed driving control for a polishing robot.

Two-antenna 자세 결정용 GPS 수신기와 DR 센서의 통합 시스템 (A Two-antenna GPS Receiver Integrated with Dead Reckoning Sensors)

  • 이재호;서홍석;성태경;박찬식;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.186-186
    • /
    • 2000
  • In the GPS/DR integrated system, the GPS position(or velocity) is used to compensate the DR output and to calibrate errors in the DR sensor. This synergistic relationship ensures that the calibrated DR accuracy can be maintained even when the GPS signal is blocked. Because of the observability problem, however, the DR sensors are not sufficiently calibrated when the vehicle speed is low. This problem can be solved if we use a multi-antenna GPS receiver for attitude determination instead of conventional one. This paper designs a two-antenna GPS receiver integrated with DR sensors. The proposed integration system has three remarkable features. First, the DR sensor can be calibrated regardless of the vehicle speed with the aid of two-antenna GPS receiver. Secondly, the search space of integer ambiguities in GPS carrier-phase measurements is reduced to a part of the surface of the sphere using DR heading. Thirdly, the detection resolution of cycle-slips in GPS carrier-phase measurements is improved with the aid of DR heading. From the experimental result, it is shown that the search grace is drastically reduced to about 3120 of the non-aided case and the cycle-slips of 1 or half cycle can be detected.

  • PDF

다중센서융합 기반의 심해무인잠수정 정밀수중항법 구현 (Implementation of Deep-sea UUV Precise Underwater Navigation based on Multiple Sensor Fusion)

  • 김기훈;최현택;이종무;김시문;이판묵;조성권
    • 한국해양공학회지
    • /
    • 제24권3호
    • /
    • pp.46-51
    • /
    • 2010
  • This paper describes the implementation of a precise underwater navigation solution using a multi-sensor fusion technique based on USBL, DVL, and IMU measurements. To implement this precise underwater navigation solution, three strategies are chosen. The first involves heading alignment angle identification to enhance the performance of a standalone dead-reckoning algorithm. In the second, the absolute position is found quickly to prevent the accumulation of integration error. The third one is the introduction of an effective outlier rejection algorithm. The performance of the developed algorithm was verified with experimental data acquired by the deep-sea ROV, Hemire, in the East-sea during a survey of a methane gas seepage area at a 1,500 m depth.

융합 센서 네트워크 정보로 보정된 관성항법센서를 이용한 추측항법의 위치추정 향상에 관한 연구 (Study on the Localization Improvement of the Dead Reckoning using the INS Calibrated by the Fusion Sensor Network Information)

  • 최재영;김성관
    • 제어로봇시스템학회논문지
    • /
    • 제18권8호
    • /
    • pp.744-749
    • /
    • 2012
  • In this paper, we suggest that how to improve an accuracy of mobile robot's localization by using the sensor network information which fuses the machine vision camera, encoder and IMU sensor. The heading value of IMU sensor is measured using terrestrial magnetism sensor which is based on magnetic field. However, this sensor is constantly affected by its surrounding environment. So, we isolated template of ceiling using vision camera to increase the sensor's accuracy when we use IMU sensor; we measured the angles by pattern matching algorithm; and to calibrate IMU sensor, we compared the obtained values with IMU sensor values and the offset value. The values that were used to obtain information on the robot's position which were of Encoder, IMU sensor, angle sensor of vision camera are transferred to the Host PC by wireless network. Then, the Host PC estimates the location of robot using all these values. As a result, we were able to get more accurate information on estimated positions than when using IMU sensor calibration solely.

자세 결정용 GPS 수신기와 DR을 이용한 통합 시스템 (An attitude determination GPS Receiver Integrated with Dead Reckoning Sensors)

  • 이재호;서흥석;성태경;이상정
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권2호
    • /
    • pp.72-79
    • /
    • 2001
  • In the GPS/DR integrated system, the GPS position(or velocity) is used to compensate the DR output and to calibrate errors of the DR sensor. This synergistic relationship ensures that the calibrated DR accuracy can be maintained even when the GPS signal is blocked. Because of the observability problem, however, the DR sensors are not sufficiently calibrated when the vehicle speed is low. This problem can be solved if we use a multi-antenna GPS receiver for attitude determination instead of conventional one. This paper designs a two-antenna GP receiver integrated with DR sensors. The proposed integration system has three remarkable features. First, the DR sensor can be calibrated regardless of the vehicle speed with the aid of two-antenna GPS receiver. Secondly, the search space of integer ambiguities in GPS carrier-phase measurements is reduced to a part of the surface of the sphere using DR heading. Thirdly, the detection resolution of cycle-slips in GPS carrier-phase measurements is improved with the aid of DR heading. From the experimental result, it is shown that the search space is drastically reduced to about 3/20 of the non-aided case and the cycle-slips of 1 or half cycle can be detected.

  • PDF

데이터 통신망을 이용한 복수 구조요원 실내 위치 추적 (Indoor Location Tracking for First Responders using Data Network)

  • 천세범;임순;이민수;허문범
    • 한국항행학회논문지
    • /
    • 제17권6호
    • /
    • pp.810-815
    • /
    • 2013
  • 구조 요원 위치 추적을 위해 Wi-Fi 기반 위치 추적 기술을 이용하는 경우, 거리 측정 정보를 제공하지 않는 Wi-Fi의 특성상 RSSI 핑거프린트 데이터베이스나 신호 감쇄 모델을 이용하여 거리측정치를 생성해 내어야 한다. 그러나 구조 현장에서 임시로 구축되는 데이터 통신 네트워크에서는 사전에 데이터베이스 구축이 어려워 적용이 곤란하다. 본 논문에서는 이러한 한계를 극복하기 위해 통신 네트워크 구축을 위해 사용된 전개식 AP의 근접 정보와 보행 항법 정보를 이용하여 복수 구조 요원의 위치 추적 방법을 연구하였다.

확장 칼만 필터를 이용한 스마트폰 실내 위치 추적 기술 연구 (A Study on smartphone indoor navigation technology using Extended Kalman filter)

  • 도현열;오종택
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.133-138
    • /
    • 2019
  • 스마트폰을 이용한 실내 항법 시스템은 대형 실내 시설에서 사용자의 위치 기반 서비스를 위해 매우 중요한 기반 기술이다. 이를 위해서 스마트폰에 내장된 가속도 센서와 자이로 센서를 이용하여 사용자의 이동 거리와 방향을 추정할 수 있다면 추가적인 외부 환경이 필요 없으므로 매우 유용한 기술이 된다. 본 논문은 일반적인 스마트폰에 Pedestrian Dead Reckoning(PDR) 기술과 칼만 필터를 적용하여, 사용자가 스마트폰을 가슴 앞에 잡고서 이동하면서 위치를 추적하는 실내에서의 항법 시스템 기술에 관한 것이다. 특히 회전 방향각을 추정하기 위하여 확장 칼만 필터가 설계되었고 실험적으로 일정속도로 보행하는 경우에 그 성능이 검증되었다.

Dual Foot-PDR System Considering Lateral Position Error Characteristics

  • Lee, Jae Hong;Cho, Seong Yun;Park, Chan Gook
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권1호
    • /
    • pp.35-44
    • /
    • 2022
  • In this paper, a dual foot (DF)-PDR system is proposed for the fusion of integration (IA)-based PDR systems independently applied on both shoes. The horizontal positions of the two shoes estimated from each PDR system are fused based on a particle filter. The proposed method bounds the position error even if the walking time increases without an additional sensor. The distribution of particles is a non-Gaussian distribution to express the lateral error due to systematic drift. Assuming that the shoe position is the pedestrian position, the multi-modal position distribution can be fused into one using the Gaussian sum. The fused pedestrian position is used as a measurement of each particle filter so that the position error is corrected. As a result, experimental results show that position of pedestrians can be effectively estimated by using only the inertial sensors attached to both shoes.

차량 항법용 자이로 센서의 특성분석 및 혼합항법 알고리즘 개발에 관한 연구 (A Study on the Characteristic Analysis of the Gyro Sensor and Development of Hybrid Navigation Algorithm for the Car Navigation)

  • 김상겸;유환신;김정하
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.171-179
    • /
    • 2004
  • Today, the number of vehicle increased rapidly with the development of modem science technology, and it caused serious problems; traffic jam, accident and pollution etc. One of the solve methods these problems it is necessary to develope the vehicle navigation systems and it is already widely used to in field of military etc. Vehicle navigation system can increase the efficiency of traffic flow and offer at a drivers at a best driving conditions. In the vehicle navigation, most important thing is to measure of correct position. There are classifiable as three types. The first is G.P.S., method at artificial satellites which measures the present position and velocity any time, any where in the world at the same time. Secondly, a vehicle can determine its position and path information with a gyroscope and odometer signal, which is called Dead-Reckoning method. Thirdly, hybrid navigation system is the combined of two methods to make utilize the advantage of each navigation system. In the paper, we are analyzed to characteristics at a gyro sensor and introduce at a composition of hybrid navigation system which is combined with the G.P.S., D.R., and map-matching technique. We analyze deeply for the Map-Matching method and explain the coordinate transformation for G.P.S., and the Hybrid navigation algorithm is developed and experimented. Finally, we conclude and comment about our road test results.