• Title/Summary/Keyword: dead loads

Search Result 132, Processing Time 0.02 seconds

Seismic Qualification Analysis of a Vertical-Axis Wind Turbine (소형 수직축 풍력발전기의 내진검증 해석)

  • Choi, Young-Hyu;Hong, Min-Gi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.21-27
    • /
    • 2016
  • The static and dynamic structural integrity qualification was performed through the seismic analysis of a small-size Savonius-type vertical wind turbine at dead weight plus wind load and seismic loads. The ANSYS finite element program was used to develop the FEM model of the wind turbine and to accomplish static, modal, and dynamic frequency response analyses. The stress of the wind turbine structure for each wind load and dead weight was calculated and combined by taking the square root of the sum of the squares (SRSS) to obtain static stresses. Seismic response spectrum analysis was also carried out in the horizontal (X and Y) and vertical (Z) directions to determine the response stress distribution for the required response spectrum (RRS) at safe-shutdown earthquake with a 5% damping (SSE-5%) condition. The stress resulting from the seismic analysis in each of the three directions was combined with the SRSS to yield dynamic stresses. These static and dynamic stresses were summed by using the same SRSS. Finally, this total stress was compared with the allowable stress design, which was calculated based on the requirements of the KBC 2009, KS C IEC 61400-1, and KS C IEC 61400-2 codes.

Dynamic Response of 3-D Cable-Stayed Bridge Considering the Sway Vibrational Effect of Stays (케이블 횡진동을 고려한 3차원 사장교의 동적거동)

  • 성익현
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.3
    • /
    • pp.36-45
    • /
    • 1999
  • The basic idea of cable-stayed girder bridges is the utilization of high strength cables to provide intermediate supports for the bridge girder so that the girder can span a much longer distance. In the cable-stayed bridge, the cables exhibit nonlinear behavior because of the change in sag, due to the dead weight of the cable, which occurs with changing tension in the cable resulting from the movement of the end points of the cable as the bridge is loaded. Techniques required for the static analysis of cable-stayed bridges has been developed by many researchers. However, little work has been done on the dynamic analysis of such structures. To investigate the characteristics of the dynamic response of long-span cable-stayed bridges due to various dynamic loadings likes moving traffic loads. two different 3-D cable-stayed bridge models are considered in this study. Two models are exactly the same in structural configurations but different in finite element discretization. Modal analysis is conducted using the deformed dead-load tangent stiffness matrix. A new concept was presented by using divided a cable into several elements in order to study the effect of the cable vibration (both in-plane and swinging) on the overall bridge dynamics. The result of this study demonstrates the importance of cable vibration on the overall bridge dynamics.

  • PDF

Probabilistic analysis of RC beams according to IS456:2000 in limit state of collapse

  • Kulkarni, Anadee M.;Dattaa, Debarati
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.165-173
    • /
    • 2019
  • This paper investigates the probability of failure of reinforced concrete beams for limit state of collapse for flexure and shear. The influence of randomness of the variables on the failure probability is also examined. The Indian standard code for plain and reinforced concrete IS456:2000 is used for the design of beams. Probabilistic models are developed for flexure and shear according to IS456:2000. The loads considered acting on the beam are live load and dead load only. Random variables associated with the limit state equation such as grade of concrete, grade of steel, live load and dead load are identified. Probability of failure is evaluated based on the limit state equation using First Order Reliability Method (FORM). Importance of the random variables on the limit state equations are observed and the variables are accordingly reduced. The effect of the reduced parameters is checked on the probability of failure. The results show the role of each parameter on the design of beam. Thus, the Indian standard guidelines for plain and reinforced concrete IS456:2000 is investigated with the probabilistic and risk-based analysis and design for a simple beam. The results obtained are also compared with the literature and accordingly some suggestions are made.

New Weight-reduction Design of the Fifth Wheel Coupler with a Trailer by Using Topology Optimization and Durability Tests (위상최적설계를 통한 트레일러 제5차륜 연결구조물의 경량화 및 내구성)

  • Kim, Cheol;Lee, Seung-Yoon;Lee, Yong-Choon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.137-143
    • /
    • 2016
  • The fifth wheel coupler is a heavy automotive coupling structure which connects a tractor and a trailer used for heavy-duty trucks widely. It is subjected to various loads simultaneously such as rolling, pitching and yawing loads as well as coupling frictional and impact loadings. Most of existing couplers have been overdesigned and, therefore, it is necessary to reduce the dead weight to increase the fuel efficiency. The topology optimization was applied in order to find conceptual layout designs which could show major load paths and ribs locations, and then the size structural optimization was performed in order to determine the heights and thicknesses of coupler ribs with the predetermined various loading conditions for the development of a new slim coupler with a minimum weight and high enough strength and stiffness. As the results of the topology optimum design, an efficient new coupling structure for truck trailers was designed. The weight of the new fifth wheel coupler was reduced by 4.9 %, compared with the existing one, even though all strength requirements were satisfied. The fatigue test of the new coupler was performed with cyclic vertical loads (+78.4 to +235.2 kN) and horizontal loads (-91.2 to +91.2 kN) simultaneously at 1 Hz and the life of 2,000,000 cycles were achieved without failure.

A Stability Analysis for Vehicle Impact in U-Channel Segmental Concrete Bridges (U-채널 세그멘탈 콘크리트 교량의 차량충돌에 대한 안전성 분석)

  • Choi, Dong-Ho;Na, Ho-Sung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.17-25
    • /
    • 2010
  • This paper studied on stability of the U-channel segmental concrete bridge under vehicle-impact loads. The U-channel bridge has advantages in that it reduces an additional dead load and the edge beams role as a barrier. But it has a dangerous factor which collapses the bridge structure when the edge beams are ruptured. Therefore, it is necessary to verify behaviors of the bridge system under vehicle-impact loads. Static and dynamic vehicle impact simulations were carried out on the basis of AASHTO LRFD design specifications. In case of the static analysis, equivalent static loads specified in the AASHTO codes are loaded on the edge beams and in case of the dynamic analysis, FEM vehicle models are modeled by applying the dynamic test specifications of AASHTO codes. As a result, it is shown that U-channel bridge system has sufficient safety against static and dynamic impact loads specified in the AASHTO LRFD design specifications.

Analysis of demountable steel and composite frames with semi-rigid bolted joints

  • Wang, Jia;Uy, Brian;Li, Dongxu
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.363-380
    • /
    • 2018
  • This paper presented an integral design procedure for demountable bolted composite frames with semi-rigid joints. Moment-rotation relationships of beam-to-column joints were predicted with analytical models aiming to provide accurate and reliable analytical solutions. Among this, initial stiffness of beam-to-column joints was derived on the basis of Timoshenko's plate theory, and moment capacity was derived in accordance with Eurocodes. The predictions were validated with relevant test results prior to further applications. Frame analysis was conducted by using Abaqus software with material and geometrical nonlinearity considered. Variable lateral loads incorporating wind actions and earthquake actions in accordance with Australian Standards were adopted to evaluate the flexural behaviour of the composite frames. Strength and serviceability limit state criteria were utilized to verify configurations of designed models. A wide range of frames with the varied number of storeys and bays were thereafter programmed to ascertain bending moment envelopes under various load combinations. The analytical results suggest that the proposed approach is capable of predicting the moment-rotation performance of the semi-rigid joints reasonably well. Outcomes of the frame analysis indicate that the load combination with dead loads and live loads only leads to maximum sagging and hogging moment magnitudes in beams. As for lateral loads, wind actions are more crucial to dominate the design of the demountable composite frames than earthquake actions. No hogging moment reversal is expected in the composite beams given that the frames are designed properly. The proposed analysis procedure is demonstrated to be a simple and efficient method, which can be applied into engineering practice.

DC-DC Buck converter Using an Adjustable Dead-time Control Method (적응형 사구간제어기법을 이용한 DC-DC 벅 변환기)

  • Lim, Dong-Kuyn;Yoo, Tai-Kyung;Lee, Gun;Yoon, Kwang-Sub
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.6
    • /
    • pp.25-32
    • /
    • 2011
  • This paper proposes high efficiency current-mode DC-DC buck converter that are suitable for portable devices. The current-mode DC-DC buck converter using adjustable Dead-time control method improves the power efficiency 2~5%. The buck converter has been implemented with a standard 0.35${\mu}m$ CMOS process. The size of this chip is 0.97$mm^2$. The input range of the fabricated DC-DC buck converter is 2.5V~3.3V, and the output is 1.8V. The maximum loading current of the converter is 500mA and the peak efficiency is 93% at 200mA loads.

A Study on the Shear Fatigue Analysis Model of Reinforced Concrete Beams (철근 콘크리트 보의 전단피로해석 모델 연구)

  • 오병환;홍경옥
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.389-392
    • /
    • 1999
  • Fatigue is a process of progressive permanent internal structural change in a material subjected to repeitive stresses. These change may be damaging and result in progressive growth of cracks and complete fracture if the stress repetitins are sufficiently large. For structural members subjected to cyclic loads, the continuous and irrecoverable damage processes are taking place. These processes are referred as the cumulative damage processes due to fatigue loading. Moreover, increased use of high strength concrete makes the fatigue problem more important because the cross-section and dead weight are reduced by using high strength concrete. The purpose of this study is to investigate the shear fatigue behavior of reinforced concrete beams according to shear reinforcement ratio and concrete compressive strength under repeated loadings. For this purpose, comprehensive static and fatigue tests of reinforced concrete beams were conducted. The major test variables for the fatigue teats are the concrete strength and the amount of shear reinforcements. The increase of deflections and steel strains according to load repetition has been plotted and analyzed to explore the damage accumulation phenomena of reinforced concrete beams. An analytical model for shear fatigue behavior has been introduced to analyze the damage accumulation under fatigue loads. The failure mode and fatigue lives have been also studied in the present study. The comparisons between analytical results and experimental data show good correlation.

  • PDF

A Basic Analysis of Behavior of Rectangular Prestressed Pilecolumn I (사각 프리스트레스트 말뚝형 기둥 기초적 특성 사례 연구 I)

  • Chon, Kyungsu;Kim, Nagyoung;Chung, Kyuchung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.13-22
    • /
    • 2013
  • A substructure of bridges is very important structural element for safety and supporting not only vertical loads as dead load and live load but lateral loads as break load, wind load, seismic load, hydrostatic pressure and dynamic water pressure, lateral earth pressure, impulsive load, temperature change and load effect of temperature change, creep and shrinkage. Most of domestic bridges are reinforced concrete piers and have an effect on economy of bridge. Recently, understanding importance of substructure, we are getting more interested in new substructure system.

A Study of Wind/Earthquake Load Analysis for LNG Vent Mast (LNG Vent Mast의 풍하중/지진하중 해석에 관한 연구)

  • Kim, Tae-Wook;Cho, Su-gil;Park, SangHyun;Oh, Jae-Won;Lee, Jung-Hee;Bae, SangEun;Kim, Hyungwoo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.343-349
    • /
    • 2020
  • As global warming accelerates due to global climate change, the International Maritime Organization(IMO) has set up Emission Control Area(ECA) and encourages the use of Liquefied Natural Gas(LNG). For this reason, as the demand for LNG increases, the demand and research of related equipment also increases. In this study, one of them, the vent mast for the discharge of LNG was studied. In general, vent mast receives various loads such as wind load, earthquake load and dead load during operation. Accordingly, consideration of these loads is essential for structural design and safety evaluation of the vent mast. In this study, the structural safety of the vent mast is evaluated by performing finite element analysis. As a result, the structural safety evaluation results were analyzed based on the database of materials of the vent mast, and the stress level was analyzed to provide a design guide.