• Title/Summary/Keyword: de novo protein synthesis

Search Result 47, Processing Time 0.033 seconds

t10,c12 Conjugated Linoleic Acid Upregulates Hepatic De Novo Lipogenesis and Triglyceride Synthesis via mTOR Pathway Activation

  • Go, Gwang-Woong;Oh, Sangnam;Park, Miri;Gang, Gyoungok;McLean, Danielle;Yang, Han-Sul;Song, Min-Ho;Kim, Younghoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1569-1576
    • /
    • 2013
  • In mice, supplementation of t10,c12 conjugated linoleic acid (CLA) increases liver mass and hepatic steatosis via increasing uptake of fatty acids released from adipose tissues. However, the effects of t10,c12 CLA on hepatic lipid synthesis and the associated mechanisms are largely unknown. Thus, we tested the hypothesis that gut microbiota-producing t10,c12 CLA would induce de novo lipogenesis and triglyceride (TG) synthesis in HepG2 cells, promoting lipid accumulation. It was found that treatment with t10,c12 CLA ($100{\mu}M$) for 72 h increased neutral lipid accumulation via enhanced incorporation of acetate, palmitate, oleate, and 2-deoxyglucose into TG. Furthermore, treatment with t10,c12 CLA led to increased mRNA expression and protein levels of lipogenic genes including SREBP1, ACC1, FASN, ELOVL6, GPAT1, and DGAT1, presenting potential mechanisms by which CLA may increase lipid deposition. Most strikingly, t10,c12 CLA treatment for 3 h increased phosphorylation of mTOR, S6K, and S6. Taken together, gut microbiota-producing t10,c12 CLA activates hepatic de novo lipogenesis and TG synthesis through activation of the mTOR/SREBP1 pathway, with consequent lipid accumulation in HepG2 cells.

Draft Genome of Toxocara canis, a Pathogen Responsible for Visceral Larva Migrans

  • Kong, Jinhwa;Won, Jungim;Yoon, Jeehee;Lee, UnJoo;Kim, Jong-Il;Huh, Sun
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.6
    • /
    • pp.751-758
    • /
    • 2016
  • This study aimed at constructing a draft genome of the adult female worm Toxocara canis using next-generation sequencing (NGS) and de novo assembly, as well as to find new genes after annotation using functional genomics tools. Using an NGS machine, we produced DNA read data of T. canis. The de novo assembly of the read data was performed using SOAPdenovo. RNA read data were assembled using Trinity. Structural annotation, homology search, functional annotation, classification of protein domains, and KEGG pathway analysis were carried out. Besides them, recently developed tools such as MAKER, PASA, Evidence Modeler, and Blast2GO were used. The scaffold DNA was obtained, the N50 was 108,950 bp, and the overall length was 341,776,187 bp. The N50 of the transcriptome was 940 bp, and its length was 53,046,952 bp. The GC content of the entire genome was 39.3%. The total number of genes was 20,178, and the total number of protein sequences was 22,358. Of the 22,358 protein sequences, 4,992 were newly observed in T. canis. Following proteins previously unknown were found: E3 ubiquitin-protein ligase cbl-b and antigen T-cell receptor, zeta chain for T-cell and B-cell regulation; endoprotease bli-4 for cuticle metabolism; mucin 12Ea and polymorphic mucin variant C6/1/40r2.1 for mucin production; tropomodulin-family protein and ryanodine receptor calcium release channels for muscle movement. We were able to find new hypothetical polypeptides sequences unique to T. canis, and the findings of this study are capable of serving as a basis for extending our biological understanding of T. canis.

Enhancement of Endotoxin-Induced Prostaglandin Synthesis by Elevation of Glucose Concentration in Primary Cultured Rat Vascular Smooth Muscle Cells (일차 배양 혈관 평활근 세포에서 포도당 농도에 의한 엔도톡신 유도 프로스타글란딘 합성 변화)

  • Lee, Soo-Hwan;Woo, Hyun-Goo;Kim, Ji-Young;Baik, Eun-Joo;Moon, Chang-Hyun
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.782-788
    • /
    • 1997
  • This study was designed to characterize glucose-enhancing effects on endotoxin-induced prostaglandin production in primary cultured rat vascular smooth muscle cells (VSMC). High glucose treatment significantly augmented prostaglandin (PG) synthesis in lipopolysaccharide (LPS)-stimulated VSMC and this effect was maximal at the concentration of 4mg/ml. It has been reported that increases in glucose metabolism through sorbitol pathway could alter the cytosolic $NADH/NAD^+$ ratio and this change favors de novo synthesis of diacylglycerol (DAG) and, in turn. Results in the activation of protein kinase C (PKC) in vascular tissues. Protein kinase C (PKC) inhibitors, staurosporin and H7, blocked the glucose enhancing effect, and DAG, a PKC activator, significantly increased the PG production stimuated by LPS. Sodium pyruvate, which can reverse the alteration in cytosolic NADH/NAD+ ratio, reduced the high glucose effect on PG production. And also, zopolrestat, a strong aldose reductase inhibitor, almost completely blocked the augmentation effect of glucose on PG synthesis. Arachidonic acid release was significantly increased in high glucose treated group, which implied the increase in $PLA_2$ activity was associated with glucose enhancing effect. Metabloic, labeling study clearly showed that de novo synthesis of prostaglandin H synthase-2 (PGHS-2) is greatly increased in high glucose treated group and this was mitigated by the treatment of zopolrestat. Taken together, the activation of PKC through sorbitol pathway increased the activities of $PLA_2$ and PGHS which resulted in the augmentation in LPS-induced PG production in high glucose treated VSMC.

  • PDF

Protein Synthesis Pattern Analysis in the Regenerating Salamander Limb

  • Ju, Bong-Gun;Kim, Won-Sun
    • Animal cells and systems
    • /
    • v.4 no.2
    • /
    • pp.145-150
    • /
    • 2000
  • Retinoic acid (RA) evokes pattern duplication in the regenerating salamander limb. Interestingly, it also enhances dedifferentiation in the regenerate by the morphological, histological and biochemical criteria. To examine whether there is any correlation between the RA-evoked pattern duplication and de novo protein synthetic profile in the regenerating salamander limb, especially during dedifferentiation, we analyzed stage-specific protein synthesis pattern in the normal and RA-treated regenerating limbs by metabolic labeling followed by two-dimensional gel electrophoresis. In the regenerating limbs without RA treatment, a few hundred kinds of proteins were found to be synthesized at the stage of wound healing and the total number of protein synthesized increased greatly as regeneration proceeded. The same trend was also observed in the RA-treated regenerating limbs. Interestingly, some protein spots were noted to be either newly synthesized or highly expressed by the RA treatment especially at the stage of dedifferentiation. The results shows that the enhancement of dedifferentiation state after the RA treatment correlates well with the protein synthesis profile, and suggest that those proteins are important for the RA-evoked pattern duplication in the regenerating limbs of salamander.

  • PDF

Secretion of the cloned serratia marcescens nuclease in escherichia coli (Serratia marcescens nuclease의 escherichia coli에서의 분비)

  • 신용철;이상열;김기석
    • Korean Journal of Microbiology
    • /
    • v.28 no.4
    • /
    • pp.297-303
    • /
    • 1990
  • Secretion of Serratia marcescens nuclease by E. coli harboring pNUC4 was investigated. 29.2, 54.2 and 16.6% of total nuclease were observed in culture medium, periplasm, and cytoplasm of E. coli, respectively. To investigate the secretion mechanism of Serratia nuclease by E. coli, secretion kinetics of nuclease was examined in the presences of sodium azide, and energy metabolism inhibitor; procaine, an exoprotein processing inhibitor; and chloramphenicol, a protein synthesis inhibitor. In the presence of sodium azide, periplasmic unclease was gradually decreased and the extracellular nyclease was linearly increased according to the incubation time. Similar results were obtained in presences of procaine and chloramphenicol. From these results, we concluded that two transport processes are involved in nuclease secretion: secretion of nuclease through the inner membrane is occurred by an energy-dependent process and probably requiring precusor processing: secretion of nuclease through outer membrane does not require energy, de novo protein synthesis, and precursor processing.

  • PDF

REGULATION OF PROENKEPHALIN GENE EXPRESSION AND MET-ENKEPHALIN SECRETION IN BOVINE ADRENAL MEDULLARY CHROMAFFIN CELLS AND C6 RAT GLIOMA CELLS

  • Suh, Hong-Won
    • Toxicological Research
    • /
    • v.9 no.2
    • /
    • pp.195-206
    • /
    • 1993
  • The expression of proenkephalin (proENK) mRNA and Met-enkephalin (ME) secretion in C6 rat glioma cells and bovine adrenal medullary chromaffin (BAMC) cells were elucidated in the present study. The levels of proENK mRNA and ME secreted into the media in BAMC cells were measured in the presence of cycloheximide and 12-tetrade-canoylphorbol-13-acetate (TPA). Cycloheximide (20 nM) abolished the induction of proENK mRNA expression, protein synthesis and ME secretion by TPA (1nM), indicating that de novo protein synthesis was necessary for proENK gene expression and ME secretion.

  • PDF

Improved Viability and Proteome Analysis of Lactobacillus fermentum KLB12 upon Heat Stress (Lactobacillus fermentum KLB12의 열 전처리에 따른 열 스트레스 내성 증진 및 프로테옴 변화)

  • 김주현;박미영;김승철;윤현식;소재성
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.294-300
    • /
    • 2003
  • In the previous study, we have isolated several vaginal lactobacilli from Korean woman and selected one of them (KLB12) for further study, which was indentified as Lactobacillus fermentum by sequence analysis of 16S rRNA gene. Formulated L. fermentum KLB12 can be used for ecological treatment of bacterial vaginosis. For pharmaceutical formulation, the spray-drying process is required where stress such as high temperature is routinely applied. In this study, we found that heat stress at 60$^{\circ}C$ for 20∼30min reduced the viable cell population of KLB12 by 10$\sub$6/~10$\sub$9/. However, adaptation of KLB12 cells at 52$^{\circ}C$ made them more thermotolerant upon exposure to 60$^{\circ}C$. The level of thermal protection in RSM (reconstituted skim milk) by adaptation in acid (pH 5), cold (4$^{\circ}C$), ethanol (3%), NaCI (0.3M) was also examined. Although not as efficient as the homologous stress, adaptations in both cold and NaCI gave considerable cross protection against heat stress. When chloramphenicol was added during heat adaptation, adaptation effect was abolished. This suggests that de novo protein synthesis is necessary during the adaptation process. Important changes in proteome during heat adaptation was examined with two-dimensional gel electrophoresis.

Downregulation of Hepatic De Novo Lipogenesis and Adipogenesis in Adipocytes by Pinus densiflora Bark Extract

  • Ahn, Hyemyoung;Jeong, Jeongho;Moyo, Knowledge Mudhibadi;Ryu, Yungsun;Min, Bokkee;Yun, Seong Ho;Kim, Hwa Yeon;Kim, Wooki;Go, Gwang-woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1925-1931
    • /
    • 2017
  • Korean red pine (Pinus densiflora) bark extract, PineXol (PX), was investigated for its potential antioxidant and anti-inflammation effects in vitro. It was hypothesized that PX treatment ($25-150{\mu}g/ml$) would reduce the lipid synthesis in HepG2 hepatocytes as well as lipid accumulation in 3T3-L1 adipocytes. Hepatocytes' intracellular triglycerides and cholesterol were decreased in the PX $150{\mu}g/ml$ treatment group compared with the control (p < 0.05). Consequently, de novo lipogenic proteins (acetyl-CoA carboxylase 1, stearoyl-CoA desaturase 1, elongase of very long chain fatty acids 6, glycerol-3-phosphate acyltransferase 1, and sterol regulatory element-binding protein 1) were significantly decreased in hepatocytes by PX $150{\mu}g/ml$ treatment compared with the control (p < 0.05). In differentiated 3T3-L1 adipocytes, the lipid accumulation was significantly attenuated by all PX treatments (p < 0.01). Regulators of adipogenesis, including CCAAT-enhancer-binding proteins alpha, peroxisome proliferatoractivated receptor gamma, and perilipin, were decreased in PX $100{\mu}g/ml$ treatment compared with the control (p < 0.05). In conclusion, PX might have anti-obesity effects by blocking hepatic lipogenesis and by inhibiting adipogenesis in adipocytes.

Effects of Cadmium on Heat Shock Protein Induction and on Clinical Indices in Rats (카드뮴이 랫드의 Heat Shock Protein 발현에 미치는 영향과 독성학적 변화에 관한 연구)

  • 김판기
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.4
    • /
    • pp.91-101
    • /
    • 1996
  • Exposure indices are important tools which enable scientists to reliably predict and detect exposures to xenobiotics and resultant cell injury. Since the de novo synthesis of stress proteins can be detected early after exposure to some agents, analysis of toxicant-induced changes in gene expression, i.e. alterations in patterns of protein synthesis, may be useful to develop as biomarkers of exposure and toxicity. The acute and chronic effects of cadmium(Cd, $CdCl_2$ 20 mg/kg) on Wistar male rats were evaluated concerning cadmium contents, tissues enzyme activity, HSP expression. The results of the study were as follows: 1. Less cadmium was absorbed through the digestive tracts, but the ratio of contents in renal to hepatic cadmium was higher at 8 weeks after treatment. 2. ALT(alanine aminotransferase), AST(aspartate aminotransferase), glucose, BUN(blood urea nitrogen), creatinine, the key indices of the clinical changes in hepatic and renal function were significantly changed by the cadmium treatment after 1 week in liver, after 4 weeks in kidney. 3. Enhanced synthesis of 70 KDa relative molecular mass proteins were detected in 2 hours after cadmium exposure, with maximum activity occurring at 8~48 hours. Induction of $HSP_{70}$ was evident at proximal tubules and glomeruli in kidney. Testicular cells produced enough HSP to be detected normally. From the above results, it could be concluded that $HSP_{70}$ induction by the cadmium treatment was a rapid reaction to indicate the exposure of xenobiotics.

  • PDF

Increased Hepatic Lipogenesis Elevates Liver Cholesterol Content

  • Berger, Jean-Mathieu;Moon, Young-Ah
    • Molecules and Cells
    • /
    • v.44 no.2
    • /
    • pp.116-125
    • /
    • 2021
  • Cardiovascular diseases (CVDs) are the most common cause of death in patients with nonalcoholic fatty liver disease (NAFLD) and dyslipidemia is considered at least partially responsible for the increased CVD risk in NAFLD patients. The aim of the present study is to understand how hepatic de novo lipogenesis influences hepatic cholesterol content as well as its effects on the plasma lipid levels. Hepatic lipogenesis was induced in mice by feeding a fat-free/high-sucrose (FF/HS) diet and the metabolic pathways associated with cholesterol were then analyzed. Both liver triglyceride and cholesterol contents were significantly increased in mice fed an FF/HS diet. Activation of fatty acid synthesis driven by the activation of sterol regulatory element binding protein (SREBP)-1c resulted in the increased liver triglycerides. The augmented cholesterol content in the liver could not be explained by an increased cholesterol synthesis, which was decreased by the FF/HS diet. HMG-CoA reductase protein level was decreased in mice fed an FF/HS diet. We found that the liver retained more cholesterol through a reduced excretion of bile acids, a reduced fecal cholesterol excretion, and an increased cholesterol uptake from plasma lipoproteins. Very low-density lipoproteintriglyceride and -cholesterol secretion were increased in mice fed an FF/HS diet, which led to hypertriglyceridemia and hypercholesterolemia in Ldlr-/- mice, a model that exhibits a more human like lipoprotein profile. These findings suggest that dietary cholesterol intake and cholesterol synthesis rates cannot only explain the hypercholesterolemia associated with NAFLD, and that the control of fatty acid synthesis should be considered for the management of dyslipidemia.