• Title/Summary/Keyword: de novo

Search Result 407, Processing Time 0.026 seconds

RUNX1 Mutations in the Leukemic Progression of Severe Congenital Neutropenia

  • Olofsen, Patricia A.;Touw, Ivo P.
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.139-144
    • /
    • 2020
  • Somatic RUNX1 mutations are found in approximately 10% of patients with de novo acute myeloid leukemia (AML), but are more common in secondary forms of myelodysplastic syndrome (MDS) or AML. Particularly, this applies to MDS/AML developing from certain types of leukemia-prone inherited bone marrow failure syndromes. How these RUNX1 mutations contribute to the pathobiology of secondary MDS/AML is still unknown. This mini-review focusses on the role of RUNX1 mutations as the most common secondary leukemogenic hit in MDS/AML evolving from severe congenital neutropenia (SCN).

Synthesis of 1,2,3-and 1,2,4-Triazole Isonucleosides as Potential antiviral agents

  • Jeong, Soon-Yong;Kim, Myong-Jung;Chun, Moon-Won
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.181.2-181.2
    • /
    • 2003
  • Inosine monophosphate dehydrogenase(IMPDH) catalyzes the $NAD^+$-dependent oxidation of IMP to XMP, the rate limiting step in the de novo biosynthesis of guanine nucleotide. Its critical role at the metabolic branch point in purine nucleotide biosynthesis makes it a useful target in the development of drugs for antiviral and anticancer chemotherapy and in immunosupressant area. Several compound with antiviral activity have been found to be inhibitors of IMPDH. For example, ribavirin, a competitive inhibitor of IMPDH, has broad spectrum antiviral activities against DNA and RNA viruses. (omitted)

  • PDF

Synthesis of 2-(3'-azido-and 3'-amino-3'-deoxy-$\beta$-D-ribofuranosyl)-thiazole-4- carboxamide

  • Shin, Ji-Hye;Liang, Cheng-Wu;Chun, Moon-Woo
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.184.3-185
    • /
    • 2003
  • Inosine 5'-monophosphate dehydrogenase (IMPDH) is a critical enzyme in the regulation of cell proliferation and differentiation. This enzyme catalyzes the $NAD^+$-dependent oxidation of IMP to XMP, the rate limiting step in de novo biosynthesis of guanine nucleotides. Therefore, the biochemical effect of IMPDH inhibition in sensitive cell types is decrease in intracellular guanine nucleotide levels, and the decrease in cellular GTP and deoxy GTP pool levels blocks DNA and RNA synthesis in rapidly proliferating tumor cells. (omitted)

  • PDF

Identification of a de novo mutation (H435Y) in the THRB gene in a Korean patient with resistance to thyroid hormone (갑상선호르몬 수용체 베타 유전자 돌연변이(H435Y)가 확인된 갑상선호르몬 저항성 증후군 1례)

  • Shin, Jin Young;Ki, Chang-Seok;Kim, Jin Kyung
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.6
    • /
    • pp.576-579
    • /
    • 2007
  • The syndrome of resistance to thyroid hormone (RTH) is characterized by reduced tissue sensitivity to thyroid hormone (TH). In the majority of subjects, RTH is caused by mutations in the thyroid hormone receptor beta ($TR{\beta}$) gene, located on the chromosome locus 3p24.3. RTH is inherited in an autosomal dominant manner. The clinical presentation of RTH is variable, but common features include elevated serum levels of thyroid hormone (TH), a normal or slightly increased thyrotropin (thyroid stimulating hormone, TSH) level that responds to thyrotropin releasing hormone (TRH), and goiter. We report a 4 year-old girl, who was clinically euthyroid in spite of high total and free $T_4$, and $T_3$ concentrations, while TSH was slightly increased. Sequence analysis of the thyroid hormone receptor beta gene (THRB) confirmed a heterozygous C to T change at nucleotide number 1303, resulting in a substitution of histidine by tyrosine at codon 435 (H435Y). Further analysis of her parents revealed that the H435Y variation was a de novo mutation since neither parents had the variation. Her parents' TH and TSH levels were within normal range.

Cytogenetic Profile of De Novo B lineage Acute Lymphoblastic Leukemia: Determination of Frequency, Distribution Pattern and Identification of Rare and Novel Chromosomal Aberrations in Indian Patients

  • Bhandari, Prerana;Ahmad, Firoz;Dalvi, Rupa;Koppaka, Neeraja;Kokate, Prajakta;Das, Bibhu Ranjan;Mandava, Swarna
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7219-7229
    • /
    • 2015
  • Background: Chromosomal aberrations identified in acute lymphoblastic leukemia (ALL) have an important role in disease diagnosis, prognosis and management. Information on karyotype and associated clinical parameters are essential to physicians for planning cancer control interventions in different geographical regions. Materials and Methods: In this study, we present the overall frequency and distribution patterns of chromosomal aberrations in both children and adult de novo B lineage ALL Indian patients using conventional cytogenetics, interphase FISH and multiplex RT-PCR. Results: Among the 215 subjects, cytogenetic results were achieved in 172 (80%) patients; normal karyotype represented 37.2% and abnormal 62.8% with a distribution as follows: 15.3% hypodiploidy; 10.3% hyperdiploidy; 15.8% t(9;22); 9.8% t(1;19); 3.7% t(12;21); 2.8% t(4;11); 2.8% complex karyotypes. Apart from these, we observed several novel, rare and common chromosomal rearrangements. Also, FISH studies using LSI extra-signal dual-color probes revealed additional structural or numerical changes. Conclusions: These results demonstrate cytogenetic heterogeneity of ALL and confirm that the incidence of chromosomal abnormalities varies considerably. To the best of our knowledge, this is one of the largest reported series of cytogenetic investigations in Indian B-lineage ALL cases. In addition, ongoing cytogenetic studies are warranted in larger groups of B-lineage ALL cases to identify newly acquired chromosomal abnormalities that may contribute to disease diagnosis and management.

Transcriptome analysis of the livers of ducklings hatched normally and with assistance

  • Liu, Yali;He, Shishan;Zeng, Tao;Du, Xue;Shen, Junda;Zhao, Ayong;Lu, Lizhi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.773-780
    • /
    • 2017
  • Objective: "Hatchability" is an important economic trait in domestic poultry. Studies on poultry hatchability focus mainly on the genetic background, egg quality, and incubation conditions, whereas the molecular mechanisms behind the phenomenon that some ducklings failed to break their eggshells are poorly understood. Methods: In this study, the transcriptional differences between the livers of normally hatched and assisted ducklings were systematically analyzed. Results: The results showed that the clean reads were de novo assembled into 161,804 and 159,083 unigenes (${\geq}200-bp$ long) by using Trinity, with an average length of 1,206 bp and 882 bp, respectively. The defined criteria of the absolute value of log2 fold-change ${\geq}1$ and false discovery rate${\leq}0.05$ were differentially expressed and were significant. As a result, 1,629 unigenes were identified, the assisted ducklings showed 510 significantly upregulated and 1,119 significantly down-regulated unigenes. In general, the metabolic rate in the livers of the assisted ducklings was lower than that in the normal ducklings; however, compared to normal ducklings, glucose-6-phosphatase and ATP synthase subunit alpha 1 associated with energy metabolism were significantly upregulated in the assisted group. The genes involved in immune defense such as major histocompatibility complex (MHC) class I antigen alpha chain and MHC class II beta chain 1 were downregulated in the assisted ducklings. Conclusion: These data provide abundant sequence resources for studying the functional genome of the livers in ducks and other poultry. In addition, our study provided insight into the molecular mechanism by which the phenomenon of weak embryos is regulated.

New Performance from an Old Member: SNP Assay and de Novo Sequencing Mediated by Exo+ DNA Polymerases

  • Zhang, Jia;Li, Kai
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.269-274
    • /
    • 2004
  • DNA polymerases without the 3' exonuclease function ($exo^-$ pol) have been widely used in sequencing and SNP genotyping. As a major player that expedited the coming of the postgenomic era, $exo^-$ polymerases worked remarkably well in the Human Genome Sequencing Project. However, it has become a challenge for this class of polymerases to efficiently screen the large number of SNPs that are found in the human genome. For more than three decades it has been recognized that polymerase fidelity varied according to the presence of proofreading activity that is mediated by its internal 3' exonuclease. Polymerases with proofreading function are famous for their high fidelity in DNA replication both in vivo and in vitro, but this well-known class of polymerases has been almost completely neglected in genetic analysis in the postgenomic era. We speculate that $exo^+$ polymerases may exhibit higher nucleotide identification ability when compared to $exo^-$ polymerases for an in vitro genetic analysis. With the application of $exo^+$ polymerases in SNP assays, a novel mechanism for the maintenance of DNA replication, the on/off switch, was discovered. Two new SNP assays have been developed to carry out genome-wide genotyping, taking advantage of the enzymatic properties of $exo^+$ polymerases. Furthermore, the on/off switch mechanism embodies a powerful nucleotide identification ability, which can be used to discriminate the bases that are upstream of the 3' terminus, and thus defines a new concept in de novo sequencing technology. Application of $exo^+$ polymerases to genetic analysis, and especially SNP assays, will greatly accelerate the pace to personalized medicine.

Severe Anemia Due to Parvovirus Infection Following Treatment with Rituximab in a Pediatric Kidney Transplant Recipient : Anemia after Treatment of Rituximab in Kidney Recipient Patient

  • Kim, Seung Yun;Lee, Hyoung Jin;Park, Eujin;Ahn, Yo Han;Ha, Il-Soo;Cheong, Hae Il;Kang, Hee Gyung
    • Childhood Kidney Diseases
    • /
    • v.19 no.2
    • /
    • pp.176-179
    • /
    • 2015
  • Rituximab (RTX), a monoclonal antibody against the B-cell marker CD20, is commonly used as a treatment for antibody-mediated diseases or B-lymphocyte-mediated diseases. Destruction of B cells may reverse the disease course in many conditions; however, patients who are treated with RTX cannot respond appropriately to de novo infection due to lack of B lymphocytes. Here, we report one such case. A 7-year-old renal allograft recipient presented with severe anemia due to parvovirus infection after RTX treatment. The patient had focal segmental glomerulosclerosis and had received cadaveric kidney transplantation 6 months previously. She was treated with high-dose steroid for acute rejection and RTX for Epstein Barr Virus infection 3 months previously. At presentation, her hemoglobin level was 5.4 g/dL and leukocyte and platelet counts were normal. She had microcytic normochromic anemia and high viral load of parvovirus B19(70,578 copies/mL). Intravenous immunoglobulin ($200mg/kg{\cdot}d$) treatment controlled the progression of anemia and parvovirus infection. De novo parvovirus infection during the B lymphocyte-depletion period may have precipitated the severe anemia in this case. Close monitoring of infection is required after RTX therapy.

Analysis of in planta Expressed Orphan Genes in the Rice Blast Fungus Magnaporthe oryzae

  • Sadat, Md. Abu;Jeon, Junhyun;Mir, Albely Afifa;Kim, Seongbeom;Choi, Jaeyoung;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.367-374
    • /
    • 2014
  • Genomes contain a large number of unique genes which have not been found in other species. Although the origin of such "orphan" genes remains unclear, they are thought to be involved in species-specific adaptive processes. Here, we analyzed seven orphan genes (MoSPC1 to MoSPC7) prioritized based on in planta expressed sequence tag data in the rice blast fungus, Magnaporthe oryzae. Expression analysis using qRT-PCR confirmed the expression of four genes (MoSPC1, MoSPC2, MoSPC3 and MoSPC7) during plant infection. However, individual deletion mutants of these four genes did not differ from the wild-type strain for all phenotypes examined, including pathogenicity. The length, GC contents, codon adaptation index and expression during mycelial growth of the four genes suggest that these genes formed during the evolutionary history of M. oryzae. Synteny analyses using closely related fungal species corroborated the notion that these genes evolved de novo in the M. oryzae genome. In this report, we discuss our inability to detect phenotypic changes in the four deletion mutants. Based on these results, the four orphan genes may be products of de novo gene birth processes, and their adaptive potential is in the course of being tested for retention or extinction through natural selection.