• Title/Summary/Keyword: dc plasma etching

Search Result 127, Processing Time 0.026 seconds

대기압 DC Arc Plasma를 이용한 Etching rate의 최적화 연구

  • Gang, In-Je;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.478-478
    • /
    • 2010
  • 대기압 플라즈마 공정은 진공 플라즈마 공정에 비해 장치의 경제성 및 규모면에서 많은 장점을 갖고 있어 대기압 공정에 대한 연구가 필요하다. 본 연구는 대기압 DC Arc Plasmatron을 이용하여 기체의 유량, 전류, plasmatron과 Si wafer 간의 거리를 변화시켜 이에 대한 Si wafer에 식각률(etching rate)을 확인하고 최적화 하였다. Ar은 2000sccm, $CF_4$는 50, 100sccm, 그리고 $O_2$는 0~1000sccm의 유량에 변화를 주었고 전류는 50A, 70A에서 식각하였다. 분석을 위해 Si wafer를 SEM(scanning electron microscope) 측정을 하였고, 그 결과 전류는 70A에서 기체 유량은 $CF_4$는 100sccm, $O_2$는 500sccm 일 때 식각률이 높게 나타났다. 그리고 전류와 유량을 위와 같은 조건에서 Plasmatron과 Si wafer 간의 거리를 5mm~15mm 변화를 주었을 때 Si wafer에 식각률을 측정해 본 결과 거리가 5mm일 때 식각률이 가장 높음을 확인 할 수 있었다. 아울러 거리를 변화시켰을 때가 유량이나 전압을 변화시킨 것 보다 식각률의 변화가 큰 경향을 보임을 알 수 있었다.

  • PDF

2MHz, 2kW RF Generator (2MHz, 2kW RF 전원장치)

  • Lee J.H.;Choi D.K.;Choi S.D.;Choi H.Y.;Won C,Y.;Kim S.S
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.260-263
    • /
    • 2003
  • When ICP(Inductive Coupled Plasma type etching and wafer manufacturing is being processed in semiconductor process, a noxious gas in PFC and CFC system is generated. Gas cleaning dry scrubber is to remove this noxious gas. This paper describes a power source device, 2MHz switching frequency class 2kW RF Generator, used as a main power source of the gas cleaning dry scrubber. The power stage of DC/DC converter is consist of full bridge type converter with 100kHz switching frequency Power amplifier is push pull type inverter with 2MHz switching frequency, and transmission line transformer. The adequacy of the circuit type and the reliability of generating plasma in various load conditions are verified through 50$\Omega$ dummy load and chamber experiments result.

  • PDF

Chemical Reaction on Etched TaNO Thin Film as O2 Content Varies in CF4/Ar Gas Mixing Plasma

  • Woo, Jong Chang;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.74-77
    • /
    • 2017
  • In this work, we investigated the etching characteristics of TaNO thin films and the selectivity of TaNO to $SiO_2$ in an $O_2$/CF4/Ar inductively coupled plasma (ICP) system. The maximum etch rate of TaNO thin film was 297.1 nm/min at a gas mixing ratio of O2/CF4/Ar (6:16:4 sccm). At the same time, the etch rate was measured as a function of the etching parameters, such as the RF power, DC-bias voltage, and process pressure. X-ray photoelectron spectroscopy analysis showed the efficient destruction of the oxide bonds by the ion bombardment, as well as the accumulation of low volatile reaction products on the etched surface. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the $CF_4$-containing plasmas.

Dry etching properties of SBT thin films using $Cl_2/Ar$ inductively coupled plasma ($Cl_2/Ar$ 유도결합 플라즈마를 이용한 SBT 박막의 건식 식각 특성)

  • Yeo, Ji-Won;Kim, Kyoung-Tae;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.404-407
    • /
    • 2003
  • Among the ferroeletric thin films that have been widely investigated for ferroelectric random access memory (FRAM) applications, the $SrBi_2Ta_2O_9$ (SBT) thin film is appropriate as a memory capacitor material due to its excellent fatigue endurance. SBT thin films were etched in high-density $Cl_2/Ar$ in inductively coupled plasma. The maximum etch rate of SBT film is $1834\;{\AA}/min$ under $Cl_2/(Cl_2+Ar)$ of 30 %, rf power of 700 W, dc-bias voltage of -250 V, chamber pressure of 11 mTorr and gas flow rate of 20 sccm.

  • PDF

Modeling of silicon carbide etching in a $NF_3/CH_4$ plasma using neural network ($NF_3/CH_4$ 플라즈마를 이용한 실리콘 카바이드 식각공정의 신경망 모델링)

  • Kim, Byung-Whan;Lee, Suk-Yong;Lee, Byung-Teak;Kwon, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.58-62
    • /
    • 2003
  • Silicon carbide (SiC) was etched in a $NF_3/CH_4$ inductively coupled plasma. The etch process was modeled by using a neural network called generalized regression neural network (GRNN). For modeling, the process was characterized by a $2^4$ full factorial experiment with one center point. To test model appropriateness, additional test data of 16 experiments were conducted. Particularly, the GRNN predictive capability was drastically improved by a genetic algorithm (GA). This was demonstrated by an improvement of more than 80% compared to a conventionally obtained model. Predicted model behaviors were highly consistent with actual measurements. From the optimized model, several plots were generated to examine etch rate variation under various plasma conditions. Unlike the typical behavior, the etch rate variation was quite different depending on the bias power Under lower bias powers, the source power effect was strongly dependent on induced dc bias. The etch rate was strongly correated to the do bias induced by the gas ratio. Particularly, the etch rate variation with the bias power at different gas ratio seemed to be limited by the etchant supply.

  • PDF

Etch Properties of HfO2 Thin Films using CH4/Ar Inductively Coupled Plasma

  • Woo, Jong-Chang;Kim, Gwan-Ha;Kim, Dong-Pyo;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.229-233
    • /
    • 2007
  • In this study, we carried out an investigation of the etching characteristics(etch rate, selectivity) of $HfO_2$ thin films in the $CH_4/Ar$ inductively coupled plasma. It was found that variations of input power and negative dc-bias voltage are investigated by the monotonic changes of the $HfO_2$ etch rate as it generally expected from the corresponding variations of plasma parameters. At the same time, a change in either gas pressure or in gas mixing ratio result in non-monotonic etch rate that reaches a maximum at 2 Pa and for $CH_4(20%)/Ar(80%)$ gas mixture, respectively. The X-ray photoelectron spectroscopy analysis showed an efficient destruction of the oxide bonds by the ion bombardment as well as showed an accumulation of low volatile reaction products on the etched surface. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the $CH_4-containing$ plasmas.

QMF Ion Beam System Development for Oxide Etching Mechanism Study (산화막 식각 기구 연구를 위한 QMF Ion Beam 장치의 제작)

  • 주정훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.4
    • /
    • pp.220-225
    • /
    • 2004
  • A new ion beam extraction system is designed using a simple ion mass filter and a micro mass balance and a QMS based detecting system. A quadrupole Mass Filter is used for selective ion beam formation from inductively coupled high density plasma sources with appropriate electrostatic lens and final analyzing QMS. Also a quartz crystal microbalance is set between a QMF and a QMS to measure the etching and polymerization rate of the mass selected ion beam. An inductively coupled plasma was used as a ion/radical source which had an electron temperature of 4-8 eV and electron density of $4${\times}$10^{11}$#/㎤. A computer interfaced system through 12bit AD-DA board can control the pass ion mass of the qmf by setting RF/DC voltage ratio applied to the quadrupoles so that time modulation of pass ion's mass is possible. So the direct measurements of ion - surface chemistry can be possible in a resolution of $1\AA$/sec based on the qcm's sensitivity. A full set of driving software and hardware setting is successfully carried out to get fundamental plasma information of the ICP source and analysed $Ar^{+}$ beam was detected at the $2^{nd}$ QMS.

Temperature Dependence on Dry Etching of $ZrO_2$ Thin Films in $Cl_2/BCl_3$/Ar Inductively Coupled Plasma ($Cl_2/BCl_3$/Ar 유도 결합 플라즈마에서 온도에 따른 $ZrO_2$ 박막의 식각)

  • Yang, Xue;Kim, Dong-Pyo;Lee, Cheol-In;Um, Doo-Seung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.145-145
    • /
    • 2008
  • High-k materials have been paid much more attention for their characteristics with high permittivity to reduce the leakage current through the scaled gate oxide. Among the high-k materials, $ZrO_2$ is one of the most attractive ones combing such favorable properties as a high dielectric constant (k= 20 ~ 25), wide band gap (5 ~ 7 eV) as well as a close thermal expansion coefficient with Si that results in good thermal stability of the $ZrO_2$/Si structure. During the etching process, plasma etching has been widely used to define fine-line patterns, selectively remove materials over topography, planarize surfaces, and trip photoresist. About the high-k materials etching, the relation between the etch characteristics of high-k dielectric materials and plasma properties is required to be studied more to match standard processing procedure with low damaged removal process. Among several etching techniques, we chose the inductively coupled plasma (ICP) for high-density plasma, easy control of ion energy and flux, low ownership and simple structure. And the $BCl_3$ was included in the gas due to the effective extraction of oxygen in the form of $BCl_xO_y$ compounds. During the etching process, the wafer surface temperature is an important parameter, until now, there is less study on temperature parameter. In this study, the etch mechanism of $ZrO_2$ thin film was investigated in function of $Cl_2$ addition to $BCl_3$/Ar gas mixture ratio, RF power and DC-bias power based on substrate temperature increased from $10^{\circ}C$ to $80^{\circ}C$. The variations of relative volume densities for the particles were measured with optical emission spectroscopy (OES). The surface imagination was measured by scanning emission spectroscope (SEM). The chemical state of film was investigated using energy dispersive X-ray (EDX).

  • PDF

The Study on the Etching Characteristics of (Ba, Sr)TiO$_3$ Film by Inductively Coupled Plasma (유도결합 플라즈마에 의한(Ba, Sr)TiO$_3$ 박막의 식각 특성 연구)

  • 김승범;이영준;염근영;김창일
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.56-62
    • /
    • 1999
  • In this study, (Ba, Sr)$TiO_3$ thin films were etched with $Cl_2$/Ar gas mixing ratio in an inductively coupled plasma (ICP) by varying the etching parameter such as rf power, dc bias voltage, and chamber pressure. The etch rate was 56 nm/min under $Cl_2$/($Cl_2$+Ar) gas mixing ratio of 0.2, rf power of 600 W, dc bias voltage of 250 V, and chamber pressure of 5 mTorr. At this time, the selectivity of BST to Pt, $SiO_2$ was respectively 0.52, 0.43. The surface reaction of the etched (Ba, Sr)$TiO_3$ thin films was investigated with X-ray photoelectron spectroscopy (XPS). Ba is removed by chemical reaction between Sr and Cl to remove Sr. Ti is removed by chemical reaction such as $TiCl_4$ with ease. The results of secondary ion mass spectrometer (SIMS) analysis compared with the results of XPS analysis and the results were the same.

  • PDF

A Study on Etching Characteristics of SnO2 Thin Films Using High Density Plasma (고밀도 플라즈마를 이용한 SnO2 박막의 건식 식각 특성)

  • Kim, Hwan-Jun;Joo, Young-Hee;Kim, Seung-Han;Woo, Jong-Chang;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.826-830
    • /
    • 2013
  • In this paper, we carried out the investigations of both etch characteristics and mechanisms for the $SnO_2$ thin films in $O_2/BCl_3/Ar$ plasma. The dry etching characteristics of the $SnO_2$ thin films was studied by varying the $O_2/BCl_3/Ar$ gas mixing ratio. We determined the optimized process conditions that were as follows: a RF power of 700 W, a DC-bias voltage of - 150 V, and a process pressure of 2 Pa. The maximum etch rate was 509.9 nm/min in $O_2/BCl_3/Ar$=(3:4:16 sccm) plasma. From XPS analysis, the etch mechanism of the $SnO_2$ thin films in the $O_2/BCl_3/Ar$ plasma can be identified as the ion-assisted chemical reaction while the role of ion bombardment includes the destruction of the metal-oxide bonds as well as the cleaning of the etched surface form the reaction products.