• Title/Summary/Keyword: dc loads

Search Result 255, Processing Time 0.031 seconds

Control of the Subsystem for a Power System (전력시스템을 위한 서브시스템의 제어)

  • Lee, Yong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.404-409
    • /
    • 2009
  • A DC power system has many loads with various functions. In particular, these sizable loads take the form of power electronic converters. When they are tightly regulated, the loads appear as constant power loads and result in negative incremental input impedance. Under certain conditions the effect of such loads on the power system is causes instability. In this paper, converter with a large storage capacitor and a lag compensator is proposed as a DC bus conditioner to mitigate the voltage transients on the bus. In addition, the proposed control approach has the advantage of performing both the functions of mitigating the voltage bus transients and maintaining the level of energy stored. Simulation and experimental results showed that the proposed control method was operated well in a small-scale DC power system that contained subsystems with constant power characteristics, such as DC/DC converters and electrical drives.

Current Sensorless Control of the Voltage Bus Conditioner for a DC Power System with Parallel Pulsed Power Loads (병렬 펄스 부하를 갖는 직류 전력시스템을 위한 Voltage Bus Conditioner의 전류 센서 없는 제어)

  • Lee, Byung-Hun;Chang, Han-Sol;La, Jae-Du;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1617-1624
    • /
    • 2012
  • A DC power system has many loads with varied functions. Also, there may be large pulsed loads with short duty ratios which can affect the normal operation of other loads. In this paper, Voltage Bus Conditioner(VBC) without any current sensors is proposed to damp the bus voltage transients by parallel pulsed loads. The proposed control approach requires only one voltage sensor and carries out both the functions of damping the bus voltage transients and maintaining the level of energy stored. The proposed control technique has been implemented on a TMS320F2812 Digital Signal Processor(DSP). Simulated results by a Matlab Simulink and experimental results are presented which verify the control principles and demonstrate the practicalty of the approach.

DC Microgrid Operational Method for Enhanced Service Reliability Using DC Bus Signaling

  • Hwang, Pyeong-Ik;Jang, Gilsoo;Pyo, Gi-Chan;Han, Byung-Moon;Moon, Seung-Il;Ahn, Seon-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.452-464
    • /
    • 2015
  • This paper proposes a DC microgrid operational strategy and control method for improved service reliability. The objective is to supply power to as many non-critical loads as possible, while providing an uninterrupted power supply to critical loads. The DC bus signaling method, in which DC voltage is an information carrier, is employed to implement the operational strategy in a decentralized manner. During grid-connected operation, a grid-tied converter balances the power of the microgrid by controlling the DC voltage. All loads are connected to the microgrid, and operate normally. During islanded operation, distributed generators (DGs), a backup generator, or an energy storage system balances the power. However, some non-critical loads may be disconnected from the microgrid to ensure the uninterrupted power supply to critical loads. For enhanced service reliability, disconnected loads can be automatically reconnected if certain conditions are satisfied. Control rules are proposed for all devices, and detailed microgrid operational modes and transition conditions are then discussed. Additionally, methods to determine control parameter settings are proposed. PSCAD/EMTDC simulation results demonstrate the performance and effectiveness of the proposed operational strategy and control method.

An 18-Pulse Full-Wave AC-DC Converter for Power Quality Improvement

  • Singh, Bhim;Gairola, Sanjay
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.109-120
    • /
    • 2008
  • In this paper, a novel delta/double-fork transformer based 18-pulse full-wave AC-DC converter is designed, modeled, simulated and developed to feed isolated DC varying loads. The proposed AC-DC converter is used for low voltage and large current DC loads in applications such as electrowinning, where isolation is required mainly for stepping down the supply voltage. The proposed converter improves power quality at AC mains and meets IEEE-519 standard requirements at varying loads.

Comparative Study on 220V AC Feed System and 300V DC Feed System for Internet Data Centers

  • Kim, Hyo-Sung
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.157-163
    • /
    • 2012
  • Internet Data Centers (IDCs), which are essential facilities in the modern IT industry, typically have scores of MW of concentrated electric loads. The provision of an Uninterruptible Power Supply (UPS) is necessary for the power feed system of IDCs owing to the need for stable power. Thus, conventional IDC AC power feed systems have three cascaded power conversion stages, (AC-DC), (DC-AC), and (AC-DC), resulting in a very low conversion efficiency. In comparison, DC power feed systems require only a single power conversion stage (AC-DC) to supply AC main power to DC server loads, resulting in comparatively high conversion efficiency and reliability [4-11]. This paper compares the efficiencies of a 220V AC power feed system with those of a 300V DC power feed system under equal load conditions, as established by the Mok-Dong IDC of Korea Telecom Co. Ltd. (KT). Experimental results show that the total operation efficiency of the 300V DC power feed system is approximately 15% higher than that of the 220V AC power feed system.

A Study of the Active Resonance Damper for a DC Distributed Power System with Parallel Pulsed Power Loads (병렬펄스부하를 갖는 직류배전시스템을 위한 능동 공진 댐퍼에 대한 연구)

  • La, Jae-Du;Lee, Byung-Hun;Chang, Han-Sol;Woo, Hyun-Min;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1289-1295
    • /
    • 2012
  • An active resonance damper for a DC Distributed Power System(DPS) with parallel loads is presented. Each pulse power load in a DC DPS comprises both a resistive power load and a step-up converter. The step-up converter behave as constant power load(CPL) when tightly regulated and usually cause a negative impedance instability problem. Furthermore, when an input filter is connected to a large constant power load, the instability of DC bus voltage. In this paper, a bidirectional DC/DC converter with a reduced storage capacitor quantitatively are proposed as a active resonance damper, to mitigate the voltage instability on the bus. The validity of the proposed method was confirmed by simulation and experimental works.

Experiment on DC Circuit Breaker for Inductive Load by Improved Magnetic Arc-extinguisher and Arc-Attenuation Circuit (개선된 자기소호회로와 아크전압 억제회로를 사용한 유도성 부하의 직류차단 특성 실험)

  • Lee, Sung-Min;Kim, Hyo-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.495-499
    • /
    • 2012
  • Recently, DC distribution systems become hot issues since DC type loads increase rapidly according to the expansion of IT equipment such as computers, servers, and digital devices; DC type loads will cover 50% for all electricity loads in 2020 which was mere 10% in 2000. DC distribution systems are also accelerated by the expansion of renewable power systems since they are easy to be interfaced with DC grids rather than AC grids. However, removing the fault current in DC grids is comparably difficult since the current in DC grids has non zero-crossing point like in AC grids. Thus, developing dedicated DC circuit breakers for DC grids is necessary to get safety for human and electrical facilities. Magnet arc extinguishing method is proper to small size DC circuit breakers. However, simple Magnet arc extinguishing method is not enough to break inductive fault currents. This paper proposed a novel DC circuit breaker against inductive fault current defined by IEEE C37.14-2004 Standard for Low-Voltage DC Power Circuit Breakers Used in Enclosures. The performance of the proposed DC circuit breaker was verified by an experimental circuit breaker test system built in this research.

The PI control of the Voltage Bus Conditioner for the improvement of the Power Quality in the DC Power Distribution System with multiple parallel loads (다중 병렬 부하를 가지는 DC 배전 시스템에서의 전력 품질 향상을 위한 Voltage Bus Conditioner의 PI 제어)

  • Lee, Byung-Hun;Woo, Hyun-Min;La, Jae-Du;Shin, Jae-Hwa;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1234-1235
    • /
    • 2011
  • A DC Power Distribution Systems(DC PDS) are widely used in telecommunication system, electric vehicle, aircraft, military system, etc. In the DC PDS, DC bus voltage instability may be occurred by the operation of multiple loads such as pulsed power load, motor drive system, and constant power loads. To damp the transients of the DC bus voltage, the Voltage Bus Conditioner(VBC) with the PI compensator is used. In this paper, the validity of the proposed VBC system is verified by PSIM simulation package.

  • PDF

A Zigzag Connected Auto-Transformer Based 24-Pulse AC-DC Converter

  • Singh, Bhim;Gairola, Sanjay
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.235-242
    • /
    • 2008
  • In this paper, a 24-pulse AC-DC converter is designed, modeled, simulated, and developed to feed non-isolated varying loads. The proposed AC-DC converter configuration consists of an auto-transformer based on zigzag connection to overcome current harmonic problems in AC mains. It improves power quality at AC mains and it meets IEEE-519 standard requirements at varying loads. A set of power quality indices on input AC mains and on DC buses for a load fed from 6-pulse and 12-pulse AC-DC converters is also given to compare their performance. It is observed that input current total harmonic distortion(THD) of less than 8% is possible with the proposed topology of AC-DC converter at varying loads.

Control Method of Low Voltage DC/DC Converter for HEV (하이브리드 자동차용 저전압 DC/DC 컨버터 제어 방법)

  • Moon, Jung-Song;Lee, Jung-Hyo;Lee, Taeck-Kie;Won, Chung-Yeun
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.598-599
    • /
    • 2010
  • Low Voltage DC/DC Converter(LDC) is the power conversion unit for suppling the power to the auxiliary battery and the electric loads on vehicle. LDC has the capabilities of stability and efficient control method so that the electric loads are fully functional. This paper proposes a control method based on one PI-controller and verifies the stable performance from simulation.

  • PDF