• Title/Summary/Keyword: days of flowering

Search Result 745, Processing Time 0.023 seconds

The Evaluation for Quality Characteristics of Drying Flowering Plant by Vacuum-Freeze (진공 동결에 의한 건조 화훼류의 품질특성 평가에 관한 연구)

  • Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.5-10
    • /
    • 2011
  • In case of using rapid vacuum-freeze drying for high quality dry flower of flowering plant, the morphological and physiological characteristics of dry rose showed as the following. The dry ratio of about 82% presented after 1 day in case of using rapid vacuum-freeze drying and it was reached that the optimum storage water content of general dry products was 18%. The dry ratio of about 89% presented after 4 days. This result indicates very short dry time comparing with natural dry time of 12 days. Also, the morphological characteristics of flowering plant in case of vacuum-freeze drying showed similar shape with real flower. The contraction decreased about 9% comparing with real flower under dry time of 72 hours. But the contraction in case of natural dry decreased 36% and showed noticeable difference. The brightness which affects physiological characteristics of dry flowering plant showed lower values according to the dry process and chromaticity was thick. After 4 days, natural dry was thick with about 2 times comparing with vacuum-freeze drying. In case of vacuum-freeze drying, the quantity of anthocyanin and chlorophyl which affect discoloration and bleaching of dry flowering plant showed the clear difference comparing with natural dry method due to the sublimation by vacuum after rapid freeze with short initial time.

Repationship Between Moisture Content in Pod and Pod Dehiscence in Rape (유채 협실의 수분함량과 협열개와의 관계)

  • 권병선
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.6
    • /
    • pp.540-544
    • /
    • 1991
  • Pod dehiscence in six rape varieties drying after harvest in the field was investigated with use of strain gauge. The development of rape pods was observed after 3-4 days of flowering. The length of pod and seed reached of their maximal size at the 20th and 35th days after flowering, respectively. The seed shape was nearly spherical 40 days after flowering, and pod width was maximal at the 45th days of flowering. Moisture content of seeds was 70% at cutting time, reduced to 30% at 5 days of drying in the plastic film house and 10% at 14 days. Pod dehiscence showed a diurnal change with moisture content of pods and relative humidity, and the dehiscence became difficult under low moisture content of pods and relative humidity of which seems to be related to the rapid drying condition of pod.

  • PDF

Growth of Seedling from Immature Kernel Harvested at Different Days after Flowering in Rye, Triticale, Wheat and Oat Cultivars (맥류미성숙 종자와 초기생육과의 관계)

  • 황종진;하용웅;연규복
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.2
    • /
    • pp.188-195
    • /
    • 1987
  • This study was conducted to investigate whether seedling growth be affected by immature kernels from different stages after flowering in rye, triticale, wheat and oats cultivars, for two years in Suwon. Kernels reached a near-maximum test weight at 35 days after flowering in Paldanghomil and Dooroohomil (Rye), and 30 days in Sinkihomil (Triticale), Geurumil (Wheat), and Megwiri (Oats). Test weight of immature kernels from different days after flowering were not significantly correlated with germination percentage, but highly positively correlated with their seedling height, fresh and dry weight. However, seedling height is not different among seedlings from kernels harvested at 20, 25 and 30 days (maturing time) after flowering of Sinkihomil and Megwiri, and between 25 and 30 days (maturing time) of Geurumil. Also between seedlings from 25 day and 30 day-kernel after flowering are little difference of fresh and dry weight of Sinkihomil and Megwiri. In Suwon, located at the middle part of Korea, it was suggested that Paldanghomi1 and Dooroohomil could be harvested at 35 days (June 19, and June 24, respectively) after flowering, and Sinkihomil, Geurumil, and Megwiri, at 25days (June 24, June 14 and July 4, respectively) after flowering for seed of for2:ge production.

  • PDF

Flowering and Seed Maturation of Sesame Cropped After Winter Barley (맥후작 참깨의 개화와 종실등숙 특성)

  • Lee, H.J.;Yun, J.I.;Kwon, Y.W.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.1
    • /
    • pp.66-71
    • /
    • 1980
  • Sesame cultivar Suweon 9 was sown at two planting time, June 19 and July 3, to study flowering and seed maturation process. Flowering began at 37-40 days after sowing at the 2-4th node and proceeded to upper node with the speed of 1.78 days (June 19 planting) and 1.56 days (July 3 planting) per node until Sept. 1. Sesame capsule reached its full size about 10 days after flowering. Number of sesame seed increased until 15 days, but seed weight gain occurred from 10 days to 35 days after flowering, that meant 25 days the actual seed filling period. The capsule flowered later than Aug. 14 remained immature. There was no more seed weight gain when average. temperature dropped below $20^{\circ}C$ (around Sept.15) and 50% of leaves had senesced. Discussion includes that sesame as an 8determinate plant may have independent source-sink relationship at each node.

  • PDF

Effects of Harvesting Time on Yields of Carthami Flos and Grain in Cathamus tinctoris L. (잇꽃 수확시기(收穫時期)에 따른 홍화(紅花) 및 종실(種實) 수량(收量))

  • Choi, Byoung-Ryourl;Park, Kyeong-Yeol;Kang, Chang-Sung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.3
    • /
    • pp.232-236
    • /
    • 1997
  • This experiment was conducted to determinate the optimum harvesting time of Carthami Flos and grain in safflower. In dry Carthami Flos yields harvested at different days after flowering, threre was no significant difference between 2 days and 4 days, however, yield harvested at 6 days was decreased significantly compared with 2 days after flowering. As the harvesting time were delayed, lightness (L') and redness (a') of dry Carthami Flos were decreased but yellowness (b') of that was increased. Color differences (${\Delta}E'ab$) of dry Carthami Flos between harvesting days after flowering were not visible between 4 days and 6 days but between those (4 days and 6 days) and 2 days were visible. As the result, the optimum harvesting time of Carthami Flos was 4 days after flowering. Grain yields and its components were affected by not harvesting Carthami Flos but grain harvesting time. Threre was no significant difference in number of grain per flower head, percentage of ripened grain between grain harvesting time. However, weight of 1000 grains and grain yields increased until 20 days after flowering. As a conclusion, the optimum harvesting time was 4 days after flowering for Carthami Flos and 20 days for grain regardless Carthami Flos harvesting time.

  • PDF

Monitoring the phenology of Forsythia velutina, an endemic plant of Korea

  • Sung, Jung-Won;Kim, Geun-Ho;Lee, Kyeong-Cheol;Shim, Yun-Jin;Kang, Shin-Gu
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.4
    • /
    • pp.355-363
    • /
    • 2021
  • Background and objective: This study was conducted on Forsythia velutina, a special plant, in Gyeongsangnam-do Arboretum under the Gyeongsangnam-do Forest Environment Research Institute, which is located in the southern part of Korea. Methods: The research aimed to analyze the flowering characteristics of the plant by calculating the optimal temperature and humidity according to the flowering time and flowering period for 8 years from 2010 to 2017 in order to provide basic data for bioclimate studies of endemic plants. Results: It was observed that the Forsythia velutina showed a life cycle from mid-March and to mid-November. Average growth period was 243 (± 6.5) days. In testing the reliability of a single variable according to the meteorological factors, the Cronbach's Alpha was 0.701, which indicates that the findings were relatively reliable. The average date of flowering was March 16 (SD = 5.8) and the average date on which blossoms fall was March 29 (SD = 5.2). A substantial difference in flowering period was observed from year to year 11 to 23 days, with an average of 16 days (± 4.7). The temperature and humidity in February to March, which affect the flowering, were 2.9-5.5℃, and 66.5-73.0%, respectively, and showed differences every year. Conclusion: The correlation between flowering time and meteorological factors was positive, and the highest daily temperature and average daily temperature had the highest significance. When establishing basic data on plant species for the conservation of endemic plants, the changes in life cycle events and weather conditions are identified. It is believed that it will be helpful in establishing a conservation strategy for the plant species in the future.

Synchronization of Flowering for Hybrid Com Seed Production by Clipping Young Plants Clear Polyethylene Mulching and Planting Date (옥수수 교잡종채종에 있어 유식물절단 비닐피복 및 파종기에 의한 자식계통 개화기조절)

  • Kang, Y.K.;Park, K.Y.;Ham, Y.S.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.4
    • /
    • pp.481-487
    • /
    • 1983
  • The need to synchronize flowering in two lines of different maturities is frequently encountered in hybrid com (Zea mays L.) seed production. To establish the methods for synchrony of flowering in parent lines of different maturities be effects of clipping at 4 and 6-leaf stages of growth and two levels, clear polyethylene mulching and five different planting dates on flowering date growth and seed yield of two dent com inbred lines of different maturities were evaluated Clipping just above the shoot-apex delayed pollen sheeding 6 to 9days and silking 5 to 13 days but reduced stand and seed yield 30 to 70% and 67 to 81%. respectively. Clipping 5cm above the shoot apex delayed flowering 1 to 4 days without stand reduction but reduced yield 3 to 29%. Laterclipping was slightly more effective for delaying flowering than earlier clipping but reduced stand more severely when clipped just above the shoot apex. Under clear polyethylene film mulching, flowering of two lines was 13 to 15 days earlier and seed yield of B68 (late line) was significantly increased. As planting was delayed from April 18 to June 13, the number of days from planting to flowering of two lines decreased due to increase in air temperature. However, growing degree days (GDD) from planting to flowering of each lines was similar regardless planting dates indicating that GDD can be satisfactoryly used for choosing the planting dates of parent lines of different maturities. Seed yields of two lines were decreased with delaying planting dates.

  • PDF

Characteristics of Wine Fermented with Fruit of Flowering Cherry and Honey (버찌와 꿀을 함께 발효한 버찌-꿀 술의 발효특성)

  • Jang, Ki-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3103-3108
    • /
    • 2011
  • This work was aimed to evaluate supplementation of honey as sole carbon source on the fermentation characteristics of wine fermented with fruit of flowering cherry and honey(flowering cherry-honey wine). Physiochemical changes of flowering cherry-honey wine(2 L) were investigated during 30 days in fermentation by strain of Saccharomyces bayanus (EC-118). At the beginning of fermentation, fructose was most abundant sugar then glucose and sucrose were followed. As fermentation proceeded, utilization of glucose by S. bayanus (EC-118) was faster than fructose, so that the ratio of fructose/glucose was increased. During fermentation for 30 days, pH and viable yeast count was changed rapidly between 0 to 5 days, while $^{\circ}Brix$(%) decreased gradually for 30 days. Final total titratable acidity, pH, $^{\circ}Brix$(%) and ethanol content of flowering cherry-honey wine were 0.43%, pH 3.5, $9.7^{\circ}Brix$(%) and 14%, respectively. Our finding demonstrate that flowering cherry-honey could be benefical supplements for wine production.

Night Interruption and Night Temperature Regulate Flower Characteristics in Cymbidium

  • Kim, Yoon-Jin;Park, Chae-Jeong;Rho, Hyung-Min;Kim, Ki-Sun
    • Horticultural Science & Technology
    • /
    • v.30 no.3
    • /
    • pp.236-242
    • /
    • 2012
  • We investigated the influences of night interruption (NI) and night temperature on flowering and flower coloration in Cymbidium. Cymbidium 'Red Fire' and 'Yokihi' were grown under a 9 hours photoperiod (control), a 9 hours photoperiod with NI at a low light intensity (LNI) of 3-7 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, or a 9 hours photoperiod with NI at a high light intensity (HNI) of 120 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for four hours (22:00-02:00 HR) for 16 weeks during the reproductive growth stage (Experiment 1). Thirty month-old Cymbidium 'Red Fire' plants with initiated flowering buds were placed in four different growth chamber with night temperature set points of 6, 9, 12, or $15^{\circ}C$ for 16 hours (18:00 to 09:00 HR) and a daytime temperature of $25^{\circ}C$ (Experiment 2). In Experiment 1, the numbers of visible buds and flowers increased, and time to flowering decreased in both the LNI and HNI treatments, as compared to the control in both cultivars. Red color in Cymbidium 'Red Fire' increased by both LNI and HNI, as evidenced by an increased $a^*$ in plants grown under these conditions, relative to those grown under the control condition. Number of days to visible buds at 9-$15^{\circ}C$ ranged from 31-34 days, as compared to 39 days at $6^{\circ}C$ in Experiment 2. Although as the temperature increased days to flowering decreased when the plant was grown at $15^{\circ}C$ as compared to 6, 9, or $12^{\circ}C$, the red color ($a^*$) also decreased. The number of flowers and percent flowering increased when the night temperature was maintained higher than $9^{\circ}C$. Therefore, NI treatment and maintaining the night temperature at approximately 9-$12^{\circ}C$ during the winter season after flower spike initiation in the reproductive developmental growth stage improve flower quality and controls flowering time.

Effect of GA3 and BA on Plant Growth of Ranunculus Cultivars

  • Kwak, Ho-Geun;Lee, Young Ran;Choi, Youn Jung;Lee, Su Young;Kang, Yun-Im
    • FLOWER RESEARCH JOURNAL
    • /
    • v.26 no.4
    • /
    • pp.179-186
    • /
    • 2018
  • Ranunculus asiaticus characterizes colorful and attractive flower shapes that are related with the ornamental value of bulbous plants. Improving ornamental value of bulbous flowers has been the general goal of floricultural market. Gibberellic acid ($GA_3$) and benzyladenine (BA) play an important role in growth and developmental processes in floriculture. Combinational treatments of these two hormones have been used in floriculture to improve flower quality. We assessed the effects of combined $GA_3$ and BA, as well as the individual effects of each hormone, on growth characteristics using soil drench application to eight R. asiaticus cultivars, 'Giallo Millepetali', 'Bianco Millepetali', 'Arancio Millepetali', 'Rosa SC', 'Arancio Pratolino', 'Giallo Pratolino', 'Bianco Pratolino', and 'Rosa Ch Pratolino'. $GA_3$ treatments increased plant height and first flower size of R. asiaticus cultivars. Moreover, about 5 to 9 days to flowering were averagely shortened by $GA_3$ treatments compared to controls. On the other hand, the opposites, including first flower size and days to flowering, were observed for cultivars treated with BA, compared with controls. Treatments of $GA_3$ + BA generally affected growth traits, such as plant height, flower size, and the timing of flowering on some R. asiaticus cultivars. In particular, about 5 to 6 days to flowering were reduced on average by Treatments of $GA_3$ + BA. Our results showed positive growth effects, including plant height, days to flowering, first flower height, number of flowers from the application of individual and combined hormones to R. asiaticus cultivars and demonstrate a role for these hormones in future bulbous floriculture.