• Title/Summary/Keyword: dataset

Search Result 4,026, Processing Time 0.027 seconds

Gait-based Human Identification System using Eigenfeature Regularization and Extraction (고유특징 정규화 및 추출 기법을 이용한 걸음걸이 바이오 정보 기반 사용자 인식 시스템)

  • Lee, Byung-Yun;Hong, Sung-Jun;Lee, Hee-Sung;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 2011
  • In this paper, we propose a gait-based human identification system using eigenfeature regularization and extraction (ERE). First, a gait feature for human identification which is called gait energy image (GEI) is generated from walking sequences acquired from a camera sensor. In training phase, regularized transformation matrix is obtained by applying ERE to the gallery GEI dataset, and the gallery GEI dataset is projected onto the eigenspace to obtain galley features. In testing phase, the probe GEI dataset is projected onto the eigenspace created in training phase and determine the identity by using a nearest neighbor classifier. Experiments are carried out on the CASIA gait dataset A to evaluate the performance of the proposed system. Experimental results show that the proposed system is better than previous works in terms of correct classification rate.

A simulation technique to create dataset of RFID business events (RFID 비즈니스 이벤트 데이터셋의 생성을 위한 시뮬레이션 기법)

  • Ryu, Wooseok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.289-291
    • /
    • 2013
  • As an wireless identification technology, RFID is now extending its application area including logistics, medicine, and healthcare. Adoption of RFID demands high cost such as h/w, s/w, and so on. To adopt RFID, we need to evaluate validity of application area and feasibility of RFID S/W such as EPC Information Service (EPCIS), which demands a variety of RFID test datasets. In this paper, I propose a novel method for generating RFID business events dataset by means of the simulation of RFID application environment. Proposed method can generate near-real RFID event dataset by means of representing various RFID application environment into abstract network model based on petri-net. In addition, it can also be useful when determining adoption of RFID as well as when evaluating RFID system.

  • PDF

The Design of Polynomial RBF Neural Network by Means of Fuzzy Inference System and Its Optimization (퍼지추론 기반 다항식 RBF 뉴럴 네트워크의 설계 및 최적화)

  • Baek, Jin-Yeol;Park, Byaung-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.399-406
    • /
    • 2009
  • In this study, Polynomial Radial Basis Function Neural Network(pRBFNN) based on Fuzzy Inference System is designed and its parameters such as learning rate, momentum coefficient, and distributed weight (width of RBF) are optimized by means of Particle Swarm Optimization. The proposed model can be expressed as three functional module that consists of condition part, conclusion part, and inference part in the viewpoint of fuzzy rule formed in 'If-then'. In the condition part of pRBFNN as a fuzzy rule, input space is partitioned by defining kernel functions (RBFs). Here, the structure of kernel functions, namely, RBF is generated from HCM clustering algorithm. We use Gaussian type and Inverse multiquadratic type as a RBF. Besides these types of RBF, Conic RBF is also proposed and used as a kernel function. Also, in order to reflect the characteristic of dataset when partitioning input space, we consider the width of RBF defined by standard deviation of dataset. In the conclusion part, the connection weights of pRBFNN are represented as a polynomial which is the extended structure of the general RBF neural network with constant as a connection weights. Finally, the output of model is decided by the fuzzy inference of the inference part of pRBFNN. In order to evaluate the proposed model, nonlinear function with 2 inputs, waster water dataset and gas furnace time series dataset are used and the results of pRBFNN are compared with some previous models. Approximation as well as generalization abilities are discussed with these results.

A Study on Area Detection Using Transfer-Learning Technique (Transfer-Learning 기법을 이용한 영역검출 기법에 관한 연구)

  • Shin, Kwang-seong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.178-179
    • /
    • 2018
  • Recently, methods of using machine learning in artificial intelligence such as autonomous navigation and speech recognition have been actively studied. Classical image processing methods such as classical boundary detection and pattern recognition have many limitations in order to recognize a specific object or area in a digital image. However, when a machine learning method such as deep-learning is used, Can be obtained. However, basically, a large amount of learning data must be secured for machine learning such as deep-learning. Therefore, it is difficult to apply the machine learning for area classification when the amount of data is very small, such as aerial photographs for environmental analysis. In this study, we apply a transfer-learning technique that can be used when the dataset size of the input image is small and the shape of the input image is not included in the category of the training dataset.

  • PDF

A Study on Strategic Factors for the Application of Digitalized Korean Human Dataset (한국인의 인체정보 활용을 위한 전략적 요인에 관한 연구)

  • Park, Dong-Jin;Lee, Sang-Tae;Lee, Sang-Ho;Lee, Seung-Bok;Shin, Dong-Sun
    • Journal of Digital Convergence
    • /
    • v.8 no.2
    • /
    • pp.203-216
    • /
    • 2010
  • This study corresponds to an exploratory survey that identifies and organizes important decision factors for establishing R&D strategic portfolio in the application of digitalized Korean human-dataset. In the case of countries that have performed the above, the digitalized human-dataset and its visualization application development research are regarded as strategic R&D projects selected and supervised in national level. To achieve the goal of this study, we organize a professional group that reviews articles, suggests research topics, considers alternatives and answers questionnaires. With this study, we draw and refine the detailed factors; these are reflected during a strategic planning phase that includes R&D vision setting, SWOT analysis and strategy development, research area and project selection. In addition to this contribution for supporting the strategic planning, the study also shows the detailed research area's definition/scope and their priorities in terms of importance and urgency. This addition will act as a guideline for investigating further research and as a framework for assessing the current status of research investment.

  • PDF

Analysis and Implications of Australian National Data Service(ANDS) (오스트레일리아의 과학데이터 서비스체제(ANDS) 분석과 시사점)

  • Park, Dong-Jin
    • Journal of Digital Convergence
    • /
    • v.9 no.3
    • /
    • pp.1-10
    • /
    • 2011
  • Our country does not currently have a concrete policy for the management and preservation of the scientific dataset on the national level. The scientists and the research groups that are implementing a research project are not capable of searching or sharing the information about the dataset. In this situation where there is a major increase in the number of researches that use digitalized dataset, being able to share and reuse the scientific data amongst researchers is recognized to be very important. Therefore our country needs a new formulated policy that manages scientific data on the national level. This paper helps to find the implications of the strategic planning in our country by analyzing previous advanced case studies done by foreign countries. We selected Australia as our subject because its intensive government-driven research environment, research infrastructure and information service are very similar to Korea. To be specific, we analyzed ANDS (Australian National Data Service) and drew out the implications that could be applied to our country also. And finally we propose the basic principles that needs to be mirrored when formulating a policy on our country's scientific data.

Current Status Analysis of Business Units and Retention Period Estimation related to Administrative Information Systems of Public Institutions (공공기관 행정정보시스템 관련 단위과제 및 보존기간 책정 현황분석)

  • Yoon, Sung-Ho;Yu, Sin Seong;Choi, Kippeum;Oh, Hyo-Jung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.31 no.2
    • /
    • pp.139-160
    • /
    • 2020
  • Since the Public Records Management Act was enacted in 2007, the administrative information system has already been included in the electronic records production system, and dataset has been subject to record management as a type of electronic records. With the recent revision of the enforcement decree, dataset records management has been enacted. This study analyzes business units related to administrative information systems of public institutions and examines the current status of retention periods estimation. For this purpose, we collected 36 records classification systems from 49 public institutions among the direct management agencies of the National Archives and disaster management agencies. And we discriminated 824 business units related to administrative information system and divided into large and small groups according to types. We also compared the retention period estimation of records. The problems and improvement plans of this study are expected to be used as basic data in preparing the standard of administrative dataset management in the future.

Face Detection Based on Incremental Learning from Very Large Size Training Data (대용량 훈련 데이타의 점진적 학습에 기반한 얼굴 검출 방법)

  • 박지영;이준호
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.949-958
    • /
    • 2004
  • race detection using a boosting based algorithm requires a very large size of face and nonface data. In addition, the fact that there always occurs a need for adding additional training data for better detection rates demands an efficient incremental teaming algorithm. In the design of incremental teaming based classifiers, the final classifier should represent the characteristics of the entire training dataset. Conventional methods have a critical problem in combining intermediate classifiers that weight updates depend solely on the performance of individual dataset. In this paper, for the purpose of application to face detection, we present a new method to combine an intermediate classifier with previously acquired ones in an optimal manner. Our algorithm creates a validation set by incrementally adding sampled instances from each dataset to represent the entire training data. The weight of each classifier is determined based on its performance on the validation set. This approach guarantees that the resulting final classifier is teamed by the entire training dataset. Experimental results show that the classifier trained by the proposed algorithm performs better than by AdaBoost which operates in batch mode, as well as by ${Learn}^{++}$.

High-Dimensional Image Indexing based on Adaptive Partitioning ana Vector Approximation (적응 분할과 벡터 근사에 기반한 고차원 이미지 색인 기법)

  • Cha, Gwang-Ho;Jeong, Jin-Wan
    • Journal of KIISE:Databases
    • /
    • v.29 no.2
    • /
    • pp.128-137
    • /
    • 2002
  • In this paper, we propose the LPC+-file for efficient indexing of high-dimensional image data. With the proliferation of multimedia data, there Is an increasing need to support the indexing and retrieval of high-dimensional image data. Recently, the LPC-file (5) that based on vector approximation has been developed for indexing high-dimensional data. The LPC-file gives good performance especially when the dataset is uniformly distributed. However, compared with for the uniformly distributed dataset, its performance degrades when the dataset is clustered. We improve the performance of the LPC-file for the strongly clustered image dataset. The basic idea is to adaptively partition the data space to find subspaces with high-density clusters and to assign more bits to them than others to increase the discriminatory power of the approximation of vectors. The total number of bits used to represent vector approximations is rather less than that of the LPC-file since the partitioned cells in the LPC+-file share the bits. An empirical evaluation shows that the LPC+-file results in significant performance improvements for real image data sets which are strongly clustered.

A Hybrid Mod K-Means Clustering with Mod SVM Algorithm to Enhance the Cancer Prediction

  • Kumar, Rethina;Ganapathy, Gopinath;Kang, Jeong-Jin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.231-243
    • /
    • 2021
  • In Recent years the way we analyze the breast cancer has changed dramatically. Breast cancer is the most common and complex disease diagnosed among women. There are several subtypes of breast cancer and many options are there for the treatment. The most important is to educate the patients. As the research continues to expand, the understanding of the disease and its current treatments types, the researchers are constantly being updated with new researching techniques. Breast cancer survival rates have been increased with the use of new advanced treatments, largely due to the factors such as earlier detection, a new personalized approach to treatment and a better understanding of the disease. Many machine learning classification models have been adopted and modified to diagnose the breast cancer disease. In order to enhance the performance of classification model, our research proposes a model using A Hybrid Modified K-Means Clustering with Modified SVM (Support Vector Machine) Machine learning algorithm to create a new method which can highly improve the performance and prediction. The proposed Machine Learning model is to improve the performance of machine learning classifier. The Proposed Model rectifies the irregularity in the dataset and they can create a new high quality dataset with high accuracy performance and prediction. The recognized datasets Wisconsin Diagnostic Breast Cancer (WDBC) Dataset have been used to perform our research. Using the Wisconsin Diagnostic Breast Cancer (WDBC) Dataset, We have created our Model that can help to diagnose the patients and predict the probability of the breast cancer. A few machine learning classifiers will be explored in this research and compared with our Proposed Model "A Hybrid Modified K-Means with Modified SVM Machine Learning Algorithm to Enhance the Cancer Prediction" to implement and evaluated. Our research results show that our Proposed Model has a significant performance compared to other previous research and with high accuracy level of 99% which will enhance the Cancer Prediction.