• Title/Summary/Keyword: data-fitting

Search Result 1,439, Processing Time 0.031 seconds

Final Settlement Prediction Methods of Embankments on Soft Clay by Back Analysis (역해석에 의한 연약지반 최종침하량 추정)

  • Lim, Seong Hun;Kang, Yea Mook;Lee, Dal Won
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.247-259
    • /
    • 1998
  • Analyses which loads were regarded as instant load and gradual step load were performed with data measured on gradually loaded field, and the results were inspected to find effect of load condition, and final settlements predicted by Hyperbolic, Tan's, Asaoka's, and Monden's method were compared with each other. According to above analyses, the following conclusions were obtained. Settlement curves which loads were regarded as instant load and gradual step load were beginning to coincide at time of twice duration of embankment. On the ground installed vertical drain, the result of Hyperbolic, Tan's, Asaoka's, Monden's, curve fitting I, and curve fitting II (simple, Carrillo) methods make conclude that Asaoka, curve fitting I, and curve fitting II methods agree with measured settlement.

  • PDF

Missing Values Estimation for Time Course Gene Expression Data Using the Sequential Partial Least Squares Regression Fitting (순차적 부분최소제곱 회귀적합에 의한 시간경로 유전자 발현 자료의 결측치 추정)

  • Kim, Kyung-Sook;Oh, Mi-Ra;Baek, Jang-Sun;Son, Young-Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.2
    • /
    • pp.275-290
    • /
    • 2008
  • The size of microarray gene expression data is very big and its observation process is also very complex. Thus missing values are frequently occurred. In this paper we propose the sequential partial least squares(SPLS) regression fitting method to estimate missing values for time course gene expression data that has correlations among observations over time points. The SPLS method is to combine the sequential technique with the partial least squares(PLS) regression fitting method. The usefulness of method proposed is evaluated through some simulation study for three yeast time course data.

The Optimization of Hyperbolic Settlement Prediction Method with the Field Data for Preloading on the Soft Ground (쌍곡선법을 이용한 계측 기반 연약지반 침하 거동 예측의 최적화 방안)

  • Choo, Yoon-Sik;Kim, June-Hyoun;Hwang, Se-Hwan;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.457-467
    • /
    • 2010
  • The settlement prediction is very important to preloading method for a construction site on a soft ground. At the design stage, however, it is hard to predict the settlement exactly due to limitations of the site survey. Most of the settlement prediction is performed by a regression settlement curve based on the field data during a construction. In Korea, hyperbolic method has been most commonly used to align the settlement curve with the field data, because of its simplicity and many application cases. The results from hyperbolic method, however, may be differed by data selections or data fitting methods. In this study, the analyses using hyperbolic method were performed about the field data of $\bigcirc\bigcirc$ site in Pusan. Two data fitting methods, using an axis transformation or an alternative method, were applied with the various data group. If data was used only after the ground water level being stabilized, fitting results using both methods were in good agreement with the measured data. Without the information about the ground water level, the alternative method gives better results with the field data than the method using an axis transformation.

  • PDF

Weighted Least Square-Based Magnetometer Calibration Method Robust in Roll-Pitch Limited Conditions (롤피치 제한 조건에 강인한 가중 최소자승법 기반 마그네토미터 캘리브레이션 기법)

  • Jeon, Tae-Hyeong;Lee, Jung-Keun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.259-265
    • /
    • 2017
  • Magnetometer calibration must be performed before the use of three-axis magnetometers to ensure the accuracy of orientation estimation. Recently, one of the most popular calibration approaches is the ellipsoid fitting technique due to its high performance in calibration. To date, in fact, performances of the existing ellipsoid fitting methods have been evaluated with full range rotation data. However, in case of the calibration of magnetometers attached to vehicles, ships, and planes, it is very difficult to collect the full range rotation data since their allowable ranges in terms of roll and pitch are limited to small. This constraint may result in serious performance degradation of some ellipsoid fitting algorithms. Therefore, to be practical, this paper proposes a weighted least square-based magnetometer calibration method that is robust in roll-pitch limited conditions. Furthermore, the proposed method is a linear approach and thus is free from the well-known initial value issue in nonlinear approaches. Experimental results show the superiority of the proposed method to other ellipsoid-fitting calibration methods.

Application of Linear Curve Fitting Methods for Slug Test Analysis in Compressible Aquifer (압축성이 큰 지반에서 순간변위(충격)시험 해석을 위한 선형 커브피팅법(Linear Curve Fitting Methods)의 적용)

  • Choi, Hang-Seok;Lee, Chul-Ho;Nguyen, The Bao
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.99-107
    • /
    • 2007
  • The linear curve fitting methods such as the Hvorslev method and the Bouwer and Rice method provide a rapid and simple means to analyze slug test data for estimating in-situ hydraulic conductivity (k) of geologic material. However, when analyzing a slug test in a relatively compressible aquifer, these methods have difficulties in fitting a straight line to the semi-logarithmic plot of the test data that shows a concave-upward curvature because the linear curve fitting methods ignore the role of the compressibility or specific storage ($S_s$) of an aquifer. The comparison of the Hvorslev method and the Bouwer and Rice method is made far a partially-penetrating well geometry to show analytically that the Hvorslev method estimates higher hydraulic conductivity than the Bouwer and Rice method except that the well intake section locates very close to the bottom of the aquifer. The effect of fitting a straight line to the slug test data is evaluated along with the dimensionless compressibility parameter (${\alpha}$) ranging from 0.001 to 1. A modified linear curve fitting method that is expanded from Chirlin's approach to the case of a partially penetrating well with the basic-time-lag fitting method is introduced. A case study for a compressible glacial till is made to verify the proposed method by comparing with a type curve method (KGS method).

A FITTING OF PARABOLAS WITH MINIMIZING THE ORTHOGONAL DISTANCE

  • Kim, Ik-Sung
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.669-684
    • /
    • 1999
  • We are interested in the problem of fitting a curve to a set of points in the plane in such a way that the sum of the squares of the orthogonal distances to given data points ins minimized. In[1] the prob-lem of fitting circles and ellipses was considered and numerically solved with general purpose methods. Especially in [2] H. Spath proposed a special purpose algorithm (Spath's ODF) for parabolas y-b=$c($\chi$-a)^2$ and for rotated ones. In this paper we present another parabola fitting algorithm which is slightly different from Spath's ODF. Our algorithm is mainly based on the steepest descent provedure with the view of en-suring the convergence of the corresponding quadratic function Q(u) to a local minimum. Numerical examples are given.

B-spline Surface Fitting using Genetic Algorithm (유전자 알고리즘을 이용한 B-spline 곡면 피팅)

  • Le, Tat-Hien;Kim, Dong-Joon;Min, Kyong-Cheol;Pyo, Sang-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.1
    • /
    • pp.87-95
    • /
    • 2009
  • The applicability of optimization techniques for hull surface fitting has been important in the ship design process. In this research, the Genetic Algorithm has been used as a searching technique for solving surface fitting problem and minimizing errors between B-spline surface and the ship's offset data. The encoded design variables are the location of the vertex points and parametric values. The sufficient accuracy in surface fitting implies not only various techniques for computer-aided design, but also the future production design.

Performance Evaluation of Linear Regression, Back-Propagation Neural Network, and Linear Hebbian Neural Network for Fitting Linear Function (선형함수 fitting을 위한 선형회귀분석, 역전파신경망 및 성현 Hebbian 신경망의 성능 비교)

  • 이문규;허해숙
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.3
    • /
    • pp.17-29
    • /
    • 1995
  • Recently, neural network models have been employed as an alternative to regression analysis for point estimation or function fitting in various field. Thus far, however, no theoretical or empirical guides seem to exist for selecting the tool which the most suitable one for a specific function-fitting problem. In this paper, we evaluate performance of three major function-fitting techniques, regression analysis and two neural network models, back-propagation and linear-Hebbian-learning neural networks. The functions to be fitted are simple linear ones of a single independent variable. The factors considered are size of noise both in dependent and independent variables, portion of outliers, and size of the data. Based on comutational results performed in this study, some guidelines are suggested to choose the best technique that can be used for a specific problem concerned.

  • PDF

Final Settlement Prediction Methods of Embankments on Soft Clay

  • Lee, Dal-Won;Lim, Seong-Hun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.68-77
    • /
    • 2000
  • Analyses, in which load was regarded as instant load and gradual step load, respectively, were performed with data measured on a gradually loaded field, and the results were inspected to find the effect of load conditions, and the final settlements which were predicted by Hyperbolic, Tan's, Asaoka's, and Monden's methods were compared with each other. Settlement curves in which load was regarded as instant load and gradual step load being to coincide at twice the time of duration of embankment. On the ground installed vertical drain, from the results of Hyperbolic, Tan's, Asaoka's, Monden's, Curve fitting I, and Curve fitting II (simple, carrillo) methods it was concluded that Asaoka, Curve fitting I, and Curve fitting II methods are reliable for prediction final settlement with back analysis.

  • PDF

A Study on the Body Shape Analysis for an Avatar Generation of the Virtual Fitting System -Focusing on Korean Women in their 20's-

  • Jang, Heekyung;Chen, Jianhui
    • Journal of Fashion Business
    • /
    • v.22 no.3
    • /
    • pp.122-142
    • /
    • 2018
  • In the virtual fitting system, the use of a 3D avatar is not a simple garment model, but it should be able to reproduce the size and shape of the customer using a fitting system. Although various virtual fitting systems have their own 3D avatar sizing systems and provide 3D avatars that match the size of the customer, there are limitations in realizing the actual body shape in actual use by the consumer. The purpose of this study is to realize a 3D avatar with excellent size and conformity for customer use. Therefore, this study aims to provide basic data for the formation of a 3D standard avatar of Korean women aged in their 20's, by comparing and analyzing the degree of the consumer user friendly system change of a body type, and the consumer's ability in selecting a consumer representative body type. Based on the survey data of 'Size Korea' conducted from 2004 to 2015 at three times, we examined the change of body shape over 10 years. Then, based on the results of 6th and 7th data, 4 factors of the concurrent body shape change of women of the consumer demographic studied were selected through the use of a factor analysis. Following this analysis, the 4 extracted factors were clustered again and finally released 7 representative body types, which were obtained based on height and weight. The size of each representative figure is derived by the use of a regression analysis, and it is used as a basic data for 3D avatar formation of the virtual fitting system.