• Title/Summary/Keyword: data-driven learning

Search Result 246, Processing Time 0.024 seconds

영한 기계 번역에서 미가공 텍스트 데이터를 이용한 대역어 선택 중의성 해소 (Target Word Selection Disambiguation using Untagged Text Data in English-Korean Machine Translation)

  • 김유섭;장정호
    • 정보처리학회논문지B
    • /
    • 제11B권6호
    • /
    • pp.749-758
    • /
    • 2004
  • 본 논문에서는 미가공 말뭉치 데이터를 활용하여 영한 기계번역 시스템의 대역어 선택 시 발생하는 중의성을 해소하는 방법을 제안한다. 이를 위하여 은닉 의미 분석(Latent Semantic Analysis : LSA)과 확률적 은닉 의미 분석(Probabilistic LSA : PLSA)을 적용한다. 이 두 기법은 텍스트 문단과 같은 문맥 정보가 주어졌을 때, 이 문맥이 내포하고 있는 복잡한 의미 구조를 표현할 수 있다 본 논문에서는 이들을 사용하여 언어적인 의미 지식(Semantic Knowledge)을 구축하였으며 이 지식은 결국 영한 기계번역에서의 대역어 선택 시 발생하는 중의성을 해소하기 위하여 단어간 의미 유사도를 추정하는데 사용된다. 또한 대역어 선택을 위해서는 미리 사전에 저장된 문법 관계를 활용하여야 한다. 본 논문에서는 이러한 대역어 선택 시 발생하는 데이터 희소성 문제를 해소하기 위하여 k-최근점 학습 알고리즘을 사용한다. 그리고 위의 두 모델을 활용하여 k-최근점 학습에서 필요한 예제 간 거리를 추정하였다. 실험에서는, 두 기법에서의 은닉 의미 공간을 구성하기 위하여 TREC 데이터(AP news)론 활용하였고, 대역어 선택의 정확도를 평가하기 위하여 Wall Street Journal 말뭉치를 사용하였다. 그리고 은닉 의미 분석을 통하여 대역어 선택의 정확성이 디폴트 의미 선택과 비교하여 약 10% 향상되었으며 PLSA가 LSA보다 근소하게 더 좋은 성능을 보였다. 또한 은닉 공간에서의 축소된 벡터의 차원수와 k-최근점 학습에서의 k값이 대역어 선택의 정확도에 미치는 영향을 대역어 선택 정확도와의 상관관계를 계산함으로써 검증하였다.젝트의 성격에 맞도록 필요한 조정만을 통하여 품질보증 프로세스를 확립할 수 있다. 개발 된 패키지의 효율적인 활용이 내조직의 소프트웨어 품질보증 구축에 투입되는 공수 및 어려움을 줄일 것으로 기대된다.도가 증가할 때 구기자 열수 추출 농축액은 $1.6182{\sim}2.0543$, 혼합구기자 열수 추출 농축액은 $1.7057{\sim}2.1462{\times}10^7\;J/kg{\cdot}mol$로 증가하였다. 이와 같이 구기자 열수 추출 농축액과 혼합구기자 열수 추출 농축액의 리올리지적 특성에 큰 차이를 나타내지는 않았다. security simultaneously.% 첨가시 pH 5.0, 7.0 및 8.0에서 각각 대조구의 57, 413 및 315% 증진되었다. 거품의 열안정성은 15분 whipping시, pH 4.0(대조구, 30.2%) 및 5.0(대조구, 23.7%)에서 각각 $0{\sim}38.0$$0{\sim}57.0%$이었고 pH 7.0(대조구, 39.6%) 및 8.0(대조구, 43.6%)에서 각각 $0{\sim}59.4$$36.6{\sim}58.4%$이었으며 sodium alginate 첨가시가 가장 양호하였다. 전체적으로 보아 거품안정성이 높은 것은 열안정성도 높은 경향이며, 표면장력이 낮으면 거품형성능이 높아지고, 비점도가 높으면 거품안정성 및 열안정성이 높아지는 경향이 있었다.protocol.eractions between application agents that are developed using different

도시침수 모의 기술 국내 연구동향 리뷰: 2001-2022 (A review on urban inundation modeling research in South Korea: 2001-2022)

  • 이승수;김보미;최현진;노성진
    • 한국수자원학회논문집
    • /
    • 제55권10호
    • /
    • pp.707-721
    • /
    • 2022
  • 본 총설연구에서는 도시침수 모의 기술의 체계와 발전 과정을 정리하고, 주요 성과와 한계점을 파악하여 향후 연구 방향과 도전 과제를 제시하였다. 이를 위해 2000년대 이후 국내 주요 학술논문집에 수록된 도시침수 모의 관련 논문 160여편을 분석하여 연구의 핵심 주제와 내용을 살펴본 후, 물리 및 데이터 기반 모형의 침수모의 세부 방법론별로 기술의 발전 현황에 대해 정리하였다. 또한, 국내 도시침수 모의 기술의 활용목적별 동향, 국외 및 연관 분야 연구동향에 대해서도 분석하였다. 국내 도시침수 모의 연구에서 Storm Water Management Model (SWMM) 모형을 활용하는 비율이 60%를 넘는 것으로 조사되었으며, 이중 배제(dual drainage)의 도시침수 물리 과정을 상세히 해석하는 국내 기술에 대한 연구가 필요한 것으로 판단되었다. 한편, 딥러닝(deep learning) 등 데이터 기반 모의 기술은 도시침수 해석의 새로운 분야로 자리매김하였다. 다만, 모형 훈련을 위한 극한기상조건에 대한 침수자료는 관측 만으로 확보할 수 없으므로, 고정확도 물리 모형과 데이터 기반 모형 연구는 상호보완적으로 진행되어야 할 필요가 있다. 도시침수 모의 기술은 인공지능이나 IoT, 메타버스 등 타 분야 신기술과의 접목이 활발히 이루어지고 있으며, 기후 위기 적응과 재해 피해 저감을 위해 지속적인 사회적 투자와 융합 연구가 필요한 분야로 판단된다.

순환인공신경망(RNN)을 이용한 대도시 도심부 교통혼잡 예측 (Traffic Congestion Estimation by Adopting Recurrent Neural Network)

  • 정희진;윤진수;배상훈
    • 한국ITS학회 논문지
    • /
    • 제16권6호
    • /
    • pp.67-78
    • /
    • 2017
  • 교통혼잡비용은 매해 증가하며, 교통혼잡비용의 63.8%에 해당되는 도심부 교통혼잡에 대한 대책 마련이 시급한 상태이다. 최근 빅데이터, 인공지능 등 4차 산업혁명을 선도하는 기술들의 발전으로 교통부문의 정보화에도 많은 변화가 초래되고 있다. 이러한 신개념 기술을 활용하여 소통상황 예측정보를 제공함으로써 교통혼잡비용을 저감할 수 있을 것으로 기대된다. 이에 본 연구에서는 순환 인공 신경망(RNN)을 활용하여 반복 및 비반복 정체 예측 모형을 개발하고자 하였다. 제안 모형은 실시간 소통정보, 이력정보, 유고상황정보 등을 활용하여 현재를 기점으로 15분 간격의 1시간 이후 소통 상황을 예측하는 모형이다. 33개 링크로 구성된 서울시 논현로에 대해 2개의 은닉층으로 구성된 RNN 모형을 구축하였다. 총 30개 모형을 계량활용변화역전파 알고리즘으로 학습하여, 이 중 평균오차제곱이 0.0834인 모형을 최적 모형으로 선정하였다. 모형 검증 결과 25개 링크에 대해 유의성 높은 예측을 하였다. 모형의 예측력을 열지도를 통해 검토한 결과 반복 정체뿐 아니라 비반복 정체까지 예측할 수 있는 것을 확인할 수 있었다. 따라서 실제 도로 상에서의 교통혼잡 예측을 위한 모형으로 활용할 수 있을 것이라 기대된다.

딥러닝을 활용한 이미지 기반 교량 구성요소 자동분류 네트워크 개발 (Image-Based Automatic Bridge Component Classification Using Deep Learning)

  • 조문원;이재혁;유영무;박정준;윤형철
    • 대한토목학회논문집
    • /
    • 제41권6호
    • /
    • pp.751-760
    • /
    • 2021
  • 우리나라의 교량은 대부분이 건설된 지 20년 이상이 지나 현재 노후화로 인하여 많은 문제점이 제기되고 있으며, 교량의 안전점검은 대부분 전문 인력의 주관적인 평가로 이루어지고 있다. 최근 교량 안전점검의 데이터의 체계적인 관리를 위해 BIM 등을 활용한 데이터 기반의 유지관리 기술들이 개발되고 있지만, BIM과 구조물의 유지관리 데이터를 연동을 위해서 영상정보를 직접 라벨링하는 수작업을 필요로한다. 따라서 본 논문에서는 이미지 기반의 자동 교량 구성요소 분류 네트워크를 개발하고자 한다. 본 연구에서 제안한 방법은 두 개의 CNN 네트워크로 구성되었다. 첫 번째 네트워크에서 특정 교량 이미지에 대하여 교량의 형식을 자동으로 분류한 뒤, 두 번째 네트워크에서 교량의 형식별로 구성요소를 분류함으로써 정확도와 효율성을 향상시키고자 한다. 본 연구에서 개발한 시스템을 검증한 결과, 847개의 교량 이미지에 대해서 98.1 %의 정확도로 교량의 구성요소를 자동으로 분류 할 수 있었다. 본 연구에서 개발한 교량의 구성요소 자동분류 기술은 향후 교량의 유지관리에 기여를 할 수 있을 것으로 기대된다.

과학외교를 위한 데이터기반의 연구주제선정 방법 (Data-Driven Approach to Identify Research Topics for Science and Technology Diplomacy)

  • 여운동;김선호;이방래;노경란
    • 한국콘텐츠학회논문지
    • /
    • 제20권11호
    • /
    • pp.216-227
    • /
    • 2020
  • 두 국가가 본격적으로 외교적 협약을 진행하기 전 우호적인 분위기를 만들기 위해서나, 국가간 정치적 우호 관계를 지속하기 위한 목적 등으로 과학외교를 사용한다. 최근에는 과학기술이 국가 발전에 미치는 영향이 커짐에 따라서 과학외교에 대한 관심이 더욱 집중되고 있다. 과학외교를 수행하기 위해 두 국가가 서로 흥미를 가질 수 있는 협동연구주제를 찾는 것은 전문가 집단에 의해 추천에 의해 이뤄진다. 그러나 이 방법은 전문가의 주관적 판단에 의지하기 때문에 편향성과 이에 따른 문제가 존재한다. 개인적 및 조직적 편향, 유명한 연구자의 후광효과, 전문가마다 다른 추천기준 등이 있을 수 있다. 본 논문에서는 전문가 기반의 방식이 가지는 문제점을 극복하기 위해 한국에서 시도된 빅데이터 기반의 외교를 위한 연구주제 추천방법을 소개한다. 빅데이터를 분석하기 위한 알고리즘은 전통적인 연구분야인 계량서지학 뿐만 아니라 최신 딥러닝 기술을 사용한다. 제안된 방식은 한국과 헝가리 간의 과학외교에 사용되었으며, 데이터기반 주제선정 방식의 가능성을 확인할 수 있었다.

인공지능 분야 국방 미래기술에 관한 실증연구 (An Empirical Study on Defense Future Technology in Artificial Intelligence)

  • 안진우;노상우;김태환;윤일웅
    • 한국산학기술학회논문지
    • /
    • 제21권5호
    • /
    • pp.409-416
    • /
    • 2020
  • 4차 산업 혁명의 핵심 동력으로 각광받고 있는 인공지능은 고성능 하드웨어와 빅데이터의 활용, 데이터 처리기술, 학습방법 및 알고리즘의 발전에 따라 단순한 학문적 지식 수준을 넘어 스마트 공장, 자율주행 등 다양한 산업분야에서 활용되며 영역을 넓혀가고 있다. 국방 분야에서도 국방 예산 감축, 병역 자원 감소, 무인 전투체계의 보편화 등 안보 환경이 변화함에 따라 선진국을 중심으로 상황 인식, 결심 지원, 업무 프로세스 간소화, 효율적 자원 활용 등 인공지능을 국방 업무에 접목하기 위한 정책 및 기술에 대한 연구가 활발히 이루어지고 있다. 이러한 이유에서 잠재력 있는 미래 국방기술의 발굴 및 연구개발을 위해 기술주도형 기획과 조사의 중요성 또한 증대되고 있다. 본 연구에서는 미래 국방기술 도출을 위해 진행되었던 연구 자료를 바탕으로 인공지능 분야 미래기술에 관한 특성 평가지표를 분석하고 실증연구를 수행하였다. 이를 통해 국방 인공지능 분야 미래기술에서는 무기체계 적용성, 경제적 파급효과가 유망도와 유의미한 관련성을 나타낸다는 것을 확인할 수 있었다.

Hellinger 거리 IoU와 Objectron 적용을 기반으로 하는 객체 감지 (Object Detection Based on Hellinger Distance IoU and Objectron Application)

  • 김용길;문경일
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권2호
    • /
    • pp.63-70
    • /
    • 2022
  • 2D 객체 감지 시스템은 최근 몇 년 동안 심층 신경망과 대규모 이미지 데이터세트의 사용으로 크게 개선되었지만, 아직도 범주 내에서 데이터 부족, 다양한 외관 및 객체 형상 때문에 자율 탐색 등과 같은 로봇 공학과 관련된 응용에서 2D 물체 감지 시스템은 적절하지 않다. 최근에 소개되고 있는 구글 Objectron 또한 증강 현실 세션 데이터를 사용하는 새로운 데이터 파이프라인이라는 점에서 도약이라 할 수 있지만, 3D 공간에서 2D 객체 이해라는 측면에서 마찬가지로 한계가 있다. 이에 본 연구에서는 더 성숙한 2D 물체 감지 방법을 Objectron에 도입하는 3D 물체 감지 시스템을 나타낸다. 대부분의 객체 감지 방법은 경계 상자를 사용하여 객체 모양과 위치를 인코딩한다. 본 작업에서는 가우스 분포를 사용하여 객체 영역의 확률적 표현을 탐색하는데, 일종의 확률적 IoU라 할 수 있는 Hellinger 거리를 기반으로 하는 가우스 분포에 대한 유사성 측도를 제시한다. 이러한 2D 표현은 모든 객체 감지기에 원활하게 통합할 수 있으며, 실험 결과 데이터 집합에서 주석이 달린 분할 영역에 더 가까워서 Objectron의 단점이라 할 수 있는 3D 감지 정확도를 높일 수 있다.

인공지능(AI) 기반 인사관리의 윤리적·법적 영향 (Ethical and Legal Implications of AI-based Human Resources Management)

  • 이정우;이정수;권지훈;차민이;김규태
    • 융합신호처리학회논문지
    • /
    • 제25권2호
    • /
    • pp.100-112
    • /
    • 2024
  • 이 연구는 인공지능(AI)을 인적 자원 관리에 활용하는 것의 윤리적 및 법적 함의, 특히 채용 과정에서 AI 인터뷰에 초점을 맞추어 조사합니다. 추론, 학습, 적응과 같은 인간 지능과 관련된 작업을 수행할 수 있는 컴퓨터 프로그램의 능력으로 정의되는 AI는 점점 더 HR 관행에 통합되고 있습니다. AI가 주도하는 인터뷰를 통해 채용에 AI를 배치하면 효율성과 객관성을 약속하지만, 동시에 중요한 윤리적 및 법적 문제도 제기됩니다. 이러한 문제에는 AI 알고리즘의 잠재적 편향, AI 의사 결정 과정의 투명성, 데이터 프라이버시 문제, 기존 노동법 및 규정 준수 등이 포함됩니다. 이 논문은 사례 연구를 분석하고 관련 문헌을 검토함으로써 이러한 과제에 대한 포괄적인 이해를 제공하고 AI 기반 HR 관행에서 윤리적 및 법적 준수를 보장하기 위한 권장 사항을 제시하는 것을 목표로 합니다. 연구 결과는 AI가 채용 효율성을 향상시킬 수 있지만, 위험을 완화하고 공정하고 투명한 채용 관행을 보장하기 위해 견고한 윤리 지침과 법적 프레임워크를 마련하는 것이 필수적임을 시사합니다.

비접촉 데이터 사회와 아카이브 재영토화 (Contactless Data Society and Reterritorialization of the Archive )

  • 조민지
    • 기록학연구
    • /
    • 제79호
    • /
    • pp.5-32
    • /
    • 2024
  • 한국 정부가 UN의 2022년 전자정부 발전 지수에서 UN가입 193개국 중 3위에 랭크됐다. 그동안 꾸준히 상위국으로 평가된 한국은 분명 세계 전자정부의 선도국이라 할 수 있다. 전자정부의 윤활유는 데이터다. 데이터는 그 자체로 정보가 아니고 기록도 아니지만 정보와 기록의 원천이며 지식의 자원이다. 전자적 시스템을 통한 행정 행위가 보편화된 이후 당연히 데이터에 기반한 기록의 생산과 기술이 확대되고 진화하고 있다. 기술은 가치중립적인 듯 보이지만 사실 그 자체로 특정 세계관을 반영하고 있다. 더구나 비물질적 유통을 기반으로 하는 디지털 세계, 온라인 네트워크의 또 다른 아이러니는 반드시 물리적 도구를 통해서만 접속하고 접촉할 수 있다는 점이다. 디지털 정보는 논리적 대상이지만 반드시 어떤 유형이든 그것을 중계할 장치 없이는 디지털 자원을 읽어 내거나 활용할 수 없다. 초연결, 초지능을 무기로 하는 새로운 기술의 디지털 질서는 전통적인 권력 구조에 깊은 영향력을 끼칠 뿐만 아니라 기존의 정보 및 지식 전달 매개체에도 마찬가지의 영향을 미치고 있다. 더구나 데이터에 기반한 생성형 인공지능을 비롯해 새로운 기술과 매개가 단연 화두다. 디지털 기술의 전방위적 성장과 확산이 인간 역능의 증강과 사유의 외주화 상황까지 왔다고 볼 수 있을 것이다. 여기에는 딥 페이크를 비롯한 가짜 이미지, 오토 프로파일링, 사실처럼 생성해 내는 AI 거짓말(hallucination), 기계 학습데이터의 저작권 침해에 이르기까지 다양한 문제점 또한 내포하고 있다. 더구나 급진적 연결 능력은 방대한 데이터의 즉각적 공유를 가능하게 하고 인지 없이 행위를 발생시키는 기술적 무의식에 의존하게 된다. 그런 점에서 지금의 기술 사회의 기계는 단순 보조의 수준을 넘어서고 있으며 기계의 인간 사회 진입은 고도의 기술 발전에 따른 자연적인 변화 양상이라고 하기에는 간단하지 않은 지점이 존재한다. 시간이 지나며 기계에 대한 관점이 변화하게 될 것이기 때문이다. 따라서 중요한 것은 기계를 통한 커뮤니케이션, 행위의 결과로서의 기록이 생산되고 사용되는 방식의 변화가 의미하는 사회문화적 함의에 있다. 아카이브 영역에서도 초지능, 초연결사회를 향한 기술의 변화로 인해 데이터 기반 아카이브 사회는 어떤 문제에 직면하게 될 것인지, 그리고 그 속에서 누가 어떻게 기록과 데이터의 지속적 활동성을 입증하고 매체 변화의 주요 동인이 될 것인가에 대한 연구가 필요한 시점이다. 본 연구는 아카이브가 행위의 결과인 기록뿐만 아니라 데이터를 전략적 자산으로 인식할 필요성에서 시작했다. 이를 통해 전통적 경계를 확장하고 데이터 중심 사회에서 어떻게 재영토화를 이룰 수 있을지를 알아보았다.

선박 갑판에서 이미지 기반 이동로봇 주행에 관한 연구 (A Study on Image-Based Mobile Robot Driving on Ship Deck)

  • 김선덕;박경민;왕승열
    • 해양환경안전학회지
    • /
    • 제28권7호
    • /
    • pp.1216-1221
    • /
    • 2022
  • 선박은 화물 운송의 효율을 증대시키기 위해 대형화되는 추세이다. 선박 대형화는 선박 작업자의 이동시간 증가, 업무 강도 증가 및 작업 효율 저하 등으로 이어진다. 작업 업무 강도 증가 등의 문제는 젊은 세대의 고강도 노동 기피 현상과 맞물러 젊은 세대의 노동력 유입을 감소시키고 있다. 또한 급속한 인구 노령화도 젊은 세대의 노동력 유입 감소와 복합적으로 작용하면서 해양산업 분야의 인력 부족 문제는 극심해지는 추세이다. 해양산업 분야는 인력 부족 문제를 극복하기 위해 지능형 생산설계 플랫폼, 스마트 생산 운영관리 시스템 등의 기술을 도입하고 있으며, 스마트 자율물류 시스템도 이러한 기술 중의 하나이다. 스마트 자율물류 시스템은 각종 물품들을 지능형 이동로봇을 활용하여 전달하는 기술로서 라이다, 카메라 등의 센서를 활용해 로봇 스스로 주행이 가능하도록 하는 것이다. 이에 본 논문에서는 이동로봇이 선박 갑판의 통행로를 감지하여 stop sign이 있는 곳까지 자율적으로 주행할 수 있는지를 확인하였다. 자율주행은 Nvidia의 End-to-end learning을 통해 학습한 데이터를 기반으로, 이동로봇에 장착된 카메라를 통해 선박 갑판의 통행로를 감지하여 수행하였다. 이동로봇의 정지는 SSD MobileNetV2를 이용하여 stop sign을 확인하여 수행하였다. 실험은 약 70m 거리의 선박 갑판 통행로를 이동로봇이 이탈 없이 주행 후 stop sign을 확인하여 정지하는지를 5회 반복 실험하였으며, 실험 결과 경로이탈 없이 주행하는 결과를 얻을 수 있었다. 이 결과를 적용한 스마트 자율물류 시스템이 산업현장에 적용된다면 작업자가 작업 시 안정성, 노동력 감소, 작업 효율이 향상될 것으로 사료된다.