• Title/Summary/Keyword: data weighting

Search Result 645, Processing Time 0.028 seconds

Comparison of term weighting schemes for document classification (문서 분류를 위한 용어 가중치 기법 비교)

  • Jeong, Ho Young;Shin, Sang Min;Choi, Yong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.265-276
    • /
    • 2019
  • The document-term frequency matrix is a general data of objects in text mining. In this study, we introduce a traditional term weighting scheme TF-IDF (term frequency-inverse document frequency) which is applied in the document-term frequency matrix and used for text classifications. In addition, we introduce and compare TF-IDF-ICSDF and TF-IGM schemes which are well known recently. This study also provides a method to extract keyword enhancing the quality of text classifications. Based on the keywords extracted, we applied support vector machine for the text classification. In this study, to compare the performance term weighting schemes, we used some performance metrics such as precision, recall, and F1-score. Therefore, we know that TF-IGM scheme provided high performance metrics and was optimal for text classification.

Integrated calibration weighting using complex auxiliary information (통합 칼리브레이션 가중치 산출 비교연구)

  • Park, Inho;Kim, Sujin
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.427-438
    • /
    • 2021
  • Two-stage sampling allows us to estimate population characteristics by both unit and cluster level together. Given a complex auxiliary information, integrated calibration weighting would better reflect the level-wise characteristics as well as multivariate characteristics between levels. This paper explored the integrated calibration weighting methods by Estevao and Särndal (2006) and Kim (2019) through a simulation study, where the efficiency of those weighting methods was compared using an artificial population data. Two weighting methods among others are shown efficient: single step calibration at the unit level with stacked individualized auxiliary information and iterative integrated calibration at each level. Under both methods, cluster calibrated weights are defined as the average of the calibrated weights of the unit(s) within cluster. Both were very good in terms of the goodness-of-fit of estimating the population totals of mutual auxiliary information between clusters and units, and showed small relative bias and relative mean square root errors for estimating the population totals of survey variables that are not included in calibration adjustments.

Construction of Super-Resolution Convolutional Neural Network Model for Super-Resolution of Temperature Data (기온 데이터 초해상화를 위한 Super-Resolution Convolutional Neural Network 모델 구축)

  • Kim, Yong-Hoon;Im, Hyo-Hyuk;Ha, Ji-Hun;Park, Kun-Woo;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.7-13
    • /
    • 2020
  • Meteorology and climate are closely related to human life. By using high-resolution weather data, services that are useful for real-life are available, and the need to produce high-resolution weather data is increasing. We propose a method for super-resolution temperature data using SRCNN. To evaluate the super-resolution temperature data, the temperature for a non-observation point is obtained by using the inverse distance weighting method, and the super-resolution temperature data using interpolation is compared with the super-resolution temperature data using SRCNN. We construct an SRCNN model suitable for super-resolution of temperature data and perform super-resolution of temperature data. As a result, the prediction performance of the super-resolution temperature data using SRCNN was about 10.8% higher than that using interpolation.

A Study on the Evaluation of Drought from Monthly Rainfall Data (월강우자료에 의한 한발측정)

  • Hwang, Eun;Choi, Deog-Soon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.3
    • /
    • pp.35-45
    • /
    • 1984
  • Generally speaking, agriculture exist in a climatic environment of uncertainty. Namely, normal rainfall value, as given by the mean values, does not exist. Thought on exists, itl does not affect like extreme Precipitation value on the part of agriculture and of others. Therefore, it is important that we measure the duration and severity index of drought caused by extreme precipitation deficit. In this purpose, this study was dealt with the calculation of drought duration and severity indexs by the method of monthly weighting coefficient. There is no quantitive definition of drought that is universally acceptable. Most of the criteria was used to identify drought have been arbitrary because a drought is a 'non-event' as opposed to a distinct event such as a flood. Therefore, confusion arises when an attempt is made to define the drought phenomenon, the calculation of duration, drought index is based on the following four fundamental question, and this study was dealt with the answers of these four questions as they related to this analytical method, as follows. First, the primary interest in this study is to be the lack of precipitation as it relates to agricultural effective rainfall. Second, the time interval was used to be month in this analysis. Third, Drought event, distinguished analytically from other event, is noted by monthly weighting coefficient method based on monthly rainfall data. Fin-ally, the seven regions used in this study have continually affected by drought on account of their rainfall deficit. The result from this method was very similar to the previous papers studied by many workers. Therefore, I think that this method is very available in Korea to identify the duration of drought, the deficit of precipitation and severity index of drought, But according to the climate of Korea exist the Asia Monsoon zone. The monthly weighting coefficient is modify a little, Because get out of 0.1-0.4 occasionally.

  • PDF

Design of Optimal FIR Filters for Data Transmission (데이터 전송을 위한 최적 FIR 필터 설계)

  • 이상욱;이용환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.8
    • /
    • pp.1226-1237
    • /
    • 1993
  • For data transmission over strictly band-limited non-ideal channels, different types of filters with arbitrary responses are needed. In this paper. we proposed two efficient techniques for the design of such FIR filters whose response is specified in either the time or the frequency domain. In particular when a fractionally-spaced structure is used for the transceiver, these filters can be efficiently designed by making use of characteristics of oversampling. By using a minimum mean-squared error criterion, we design a fractionally-spaced FIR filter whose frequency response can be controlled without affecting the output error. With proper specification of the shape of the additive noise signals, for example, the design results in a receiver filter that can perform compromise equalization as well as phase splitting filtering for QAM demodulation. The second method ad-dresses the design of an FIR filter whose desired response can be arbitrarily specified in the frequency domain. For optimum design, we use an iterative optimization technique based on a weighted least mean square algorithm. A new adaptation algorithm for updating the weighting function is proposed for fast and stable convergence. It is shown that these two independent methods can be efficiently combined together for more complex applications.

  • PDF

Modified parity space averaging approaches for online cross-calibration of redundant sensors in nuclear reactors

  • Kassim, Moath;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.589-598
    • /
    • 2018
  • To maintain safety and reliability of reactors, redundant sensors are usually used to measure critical variables and estimate their averaged time-dependency. Nonhealthy sensors can badly influence the estimation result of the process variable. Since online condition monitoring was introduced, the online cross-calibration method has been widely used to detect any anomaly of sensor readings among the redundant group. The cross-calibration method has four main averaging techniques: simple averaging, band averaging, weighted averaging, and parity space averaging (PSA). PSA is used to weigh redundant signals based on their error bounds and their band consistency. Using the consistency weighting factor (C), PSA assigns more weight to consistent signals that have shared bands, based on how many bands they share, and gives inconsistent signals of very low weight. In this article, three approaches are introduced for improving the PSA technique: the first is to add another consistency factor, so called trend consistency (TC), to include a consideration of the preserving of any characteristic edge that reflects the behavior of equipment/component measured by the process parameter; the second approach proposes replacing the error bound/accuracy based weighting factor ($W^a$) with a weighting factor based on the Euclidean distance ($W^d$), and the third approach proposes applying $W^d$, TC, and C, all together. Cold neutron source data sets of four redundant hydrogen pressure transmitters from a research reactor were used to perform the validation and verification. Results showed that the second and third modified approaches lead to reasonable improvement of the PSA technique. All approaches implemented in this study were similar in that they have the capability to (1) identify and isolate a drifted sensor that should undergo calibration, (2) identify a faulty sensor/s due to long and continuous missing data range, and (3) identify a healthy sensor.

Performance Improvement of Web Document Classification through Incorporation of Feature Selection and Weighting (특징선택과 특징가중의 융합을 통한 웹문서분류 성능의 개선)

  • Lee, Ah-Ram;Kim, Han-Joon;Man, Xuan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.141-148
    • /
    • 2013
  • Automated classification systems which utilize machine learning develops classification models through learning process, and then classify unknown data into predefined set of categories according to the model. The performance of machine learning-based classification systems relies greatly upon the quality of features composing classification models. For textual data, we can use their word terms and structure information in order to generate the set of features. Particularly, in order to extract feature from Web documents, we need to analyze tag and hyperlink information. Recent studies on Web document classification focus on feature engineering technology other than machine learning algorithms themselves. Thus this paper proposes a novel method of incorporating feature selection and weighting which can improves classification models effectively. Through extensive experiments using Web-KB document collections, the proposed method outperforms conventional ones.

Hybrid Preference Prediction Technique Using Weighting based Data Reliability for Collaborative Filtering Recommendation System (협업 필터링 추천 시스템을 위한 데이터 신뢰도 기반 가중치를 이용한 하이브리드 선호도 예측 기법)

  • Lee, O-Joun;Baek, Yeong-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.5
    • /
    • pp.61-69
    • /
    • 2014
  • Collaborative filtering recommendation creates similar item subset or similar user subset based on user preference about items and predict user preference to particular item by using them. Thus, if preference matrix has low density, reliability of recommendation will be sharply decreased. To solve these problems we suggest Hybrid Preference Prediction Technique Using Weighting based Data Reliability. Preference prediction is carried out by creating similar item subset and similar user subset and predicting user preference by each subset and merging each predictive value by weighting point applying model condition. According to this technique, we can increase accuracy of user preference prediction and implement recommendation system which can provide highly reliable recommendation when density of preference matrix is low. Efficiency of this system is verified by Mean Absolute Error. Proposed technique shows average 21.7% improvement than Hao Ji's technique when preference matrix sparsity is more than 84% through experiment.

Causal effect of urban parks on children's happiness (도시공원 면적이 유아 행복감에 미치는 영향에 대한 인과관계 연구)

  • Nayeon Kwon;Chanmin Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.1
    • /
    • pp.63-83
    • /
    • 2023
  • Many existing studies have found significant correlations between green spaces, including urban parks, and children's happiness. Furthermore, it was implied that the area/proximity of the urban park would be effective in enhancing infancy happiness. However, inferring causal effects from observed data requires appropriate adjustment of confounding variables, and from this perspective, the causal relationship between the area of urban parks and children's happiness has not been well understood. The causal effect of urban parks on children's happiness was estimated in this study using data from the panel study on Korean children. As methods for adjusting confounding variables, regression adjustment using a regression method, weighting method, and matching method were used, and key concepts of each method were described before the analysis results. Confounders were chosen for the analysis using a directed acyclic graph. In contrast to previous research, the analysis found no significant causal relationship between the size of the city park and children's happiness.

Development of a Novel Integrated Evaluation Index for Freeway Traffic Data (고속도로 교통자료 품질 통합평가지표 개발)

  • PARK, Hyunjin;YOON, Mijung;KIM, Hae;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.4
    • /
    • pp.417-429
    • /
    • 2015
  • Evaluation of traffic data quality is a backbone of better traffic information and management systems because it directly affects the reliability of traffic information. This study developed an integrated index for evaluating the quality of archived intelligent transportation systems (ITS) data. Two novel indices including spatio-temporal consistency and severity of missing data were devised and integrated with existing indices such as availability and completeness. An evaluation framework was proposed based on the developed integrated index. Both analytical hierarchical analysis (AHP) technique and entropy method were adopted to derive mixed weighting values to be used for the integrated index. It is expected that the proposed methodology would be effectively used in enhancing the quality of traffic data as a part of traffic information system.