• Title/Summary/Keyword: data payload

Search Result 262, Processing Time 0.024 seconds

UAV SAR Target Detection Modeling Using STK (STK를 이용한 UAV SAR 목표물 탐지기법)

  • Hwang, Sung-Uk;Kim, Ah-Leum;Song, Jung-Hwan;Lee, Woo-Kyung
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.2
    • /
    • pp.12-19
    • /
    • 2009
  • In the modern UAV systems, the role of radar payload has been increasing with its unique performance of day-and-night operation and see-through capability over hidden obstacles. Contrary to the satellite reconnaissance, UAV is expected to provide high resolution target detection and recognition capability while frequent flight missions would deliver enhanced SAR image and local information over the target area. STK(Satellite Tool Kit) is a professional space-analysis software widely used in all phases of a space system's life cycle. The simulation of STK is efficient and accurate relatively. In this paper, the author attempt to model the UAV operation and measure the expected SAR image quality. STK(Satellite Tool Kit) is employed to analyze UAV operation and produce SAR raw data. A SAR simulator is developed to produce high resolution SAR image for various ground targets.

  • PDF

Preliminary observational results with MIRIS

  • Han, Wonyong;Pyo, Jeonghyun;Kim, Il-Joong;Lee, Dae-Hee;Jeong, Woong-Seob;Moon, Bongkon;Park, Youngsik;Park, Sung-Joon;Lee, Dukhang;Park, Won-Kee;Ko, Kyeongyeon;Kim, Min Gyu;Nam, Uk-Won;Lee, Hyung Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2015
  • The first Korean infrared space telescope MIRIS (Milti-purpose InfraRed Imaging System) was successfully launched in November 2013, as the main payload of Korean STSAT-3 (Science and Technology Satellite-3). After initial on-orbit operation for verification, the observations have been made with MIRIS for the fluctuation of Cosmic Infrared Background and the Galactic Plane survey. For the study of near-infrared background, MIRIS completed the survey of large areas (> $10^{\circ}{\times}10^{\circ}$ around the pole regions: the north ecliptic pole (NEP), the north and south Galactic poles (NGP, SGP). We are also continuously and frequently monitoring the NEP region for the instrumental calibration and the zodiacal light study. One the other hand, the Paschen-${\alpha}$ Galactic plane survey has been carried out using two narrow-band filters (at $1.88{\mu}m$ and $1.84+1.92{\mu}m$) of MIRIS. This survey is planning to cover the whole Galactic plane with the latitude of ${\pm}3^{\circ}$, and the longitude regions of $+280^{\circ}<l<360^{\circ}$ and $0^{\circ}<l<+210^{\circ}$ have been completed (~ 80%) by February 2015. The data are still under the stage of reduction and analysis, and we present some preliminary results.

  • PDF

Development Trend of Geostationary Environment Monitoring Payloads (환경감시용 정지궤도위성 탑재센서 개발동향)

  • Lee, Seung-Hoon;Kim, Sung-Kyu;Yeon, Jeoung-Heum;Kim, Seong-Hui;Ko, Dai-Ho;Yong, Sang-Soon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.2
    • /
    • pp.31-38
    • /
    • 2010
  • Environment and climate changes affect all aspects of our society. The enhanced remote sensing technology made the satellite to be widely used in the environment monitoring applications. Geostationary environmental monitoring is also actively researched due to the increased needs for the monitoring of diurnal environmental changes, troposhperic pollution and its origin. In this paper, recent development trends of geostationary environment monitoring payloads are introduced. GEO-CAFE and GIFTS missions are researched by the leading of the NASA and Sentinel-4 by the ESA. Those missions are in the state of detailed conceptual design and hardware development preparing with the launch plan in the late 2010s. By considering these development trends, domestic environment monitoring payloads shall be developed with careful analysis on the mission and data application.

  • PDF

DESIGN OF HIGH SENSITIVE SP ACEBORNE MICROWAVE RADIOMETER DREAM ON STSAT-2

  • Kim Sung-Hyun;Lee Ho-Jin;Yun Seok-Hun;Chae Chun-Sik;Park Hyuk;Kim Yong-Hoon;Park Jeong-oh;Sim Eun-Sup;Zhang De-Hai;Jiang Jing-Shan
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.526-529
    • /
    • 2005
  • Dual-channel Radiometers for Earth and Atmosphere Monitoring (DREAM) is the Korean first spaceborne microwave radiometer which is the main payload of Science and Technology SATellite-2 (STSAT-2). STSAT-2 will be launched by Korea Space Launch Vehicle-l (KSL V-I) at NARO Space Center in Korea in 2007. DREAM is a two-channel, total power microwave radiometer with the center frequencies of 23.8 GHz and 37 GHz. The spaceborne radiometer is composed of an antenna unit, a receiver unit, and a data acquisition/processing unit. The bandwidths of radiometer are 600 MHz at 23.8 GHz and 1000 MHz at 37 GHz. The integration time of two channels is 200 rns. The sensitivity of DREAM is less than 0.5 K. This paper presents the required performance and system design of DREAM in detail.

  • PDF

Performance of 3D HDTV Transmission with Block LDPC Codes (블록 LDPC 부호를 사용한 3D HDTV 전송 성능개선 방안 연구)

  • Kim, Min-Ki;Kim, Dong Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.21-25
    • /
    • 2013
  • The dual-stream based stereoscopic 3D HDTV broadcasting service was launched recently. Although the dual-stream based HDTV service has been successfully provided, the 3D HDTV broadcasting system requires more bandwidth efficient transmission schemes because it should convey both left and right HD resolution images simultaneously in the finite 6MHz bandwidth. In this paper, we consider more advanced ATSC transmission schemes that use higher modulation such as 16-QAM and concatenated RS code and block LDPC codes. Compared with conventional ATSC system and the modified ATSC system in [2], the proposed system has about 2.97dB and 1.12dB SNR gain at the payload data rate of 19.44Mbps compared with the existing ATSC system and the modified ATSC system [2]. Also, the proposed scheme requires only 1.05dB power increase for the 3D HDTV service, which is reasonable SNR increase value and applicable to the advanced 3D high definition broadcasting realization in limited 6MHz bandwidth.

Effect of Bandwidth of Moving Average Filter on Symbol Timing Detection Performance (이동 평균 필터의 대역폭이 심벌 타이밍 검출 성능에 미치는 영향)

  • Lee, Jihye;Jeon, Taehyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.117-121
    • /
    • 2014
  • In the orthogonal frequency division multiplexing system, the prefix inserted between data symbols should be eliminated to apply the Fourier transform on the valid symbol interval. This functional procedure should be based on the accurate symbol timing detection. The symbol timing detection at the receiver side provides the reference for determining the beginning time index of each symbol whose initial point is located at the boundary between the preamble and the payload part. Also, the detection error is one of the main factors in the overall system performance. In this paper the effect of the bandwidth of the moving average filter on the symbol timing detection is discussed. Simulations are carried out to analyze the detection performance for the varying values of the window size of the moving average filter which is related to the filter bandwidth.

Ground Test and Performance Evaluation of Miniaturized AHRS for Small-Scale UAV (소형무인항공기를 위한 소형 경량 AHRS의 지상시험 및 성능 평가)

  • Roh, Min-Shik;Song, Jun-Beom;Song, Woo-Jin;Kang, Beom-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.2
    • /
    • pp.181-188
    • /
    • 2011
  • A small UAVs(Unmaned Aerial Vehicles) have limited by the payload capacity which requires miniaturization of a navigation system. In this paper, the performance of the lightweight and small sized AHRS(Attitude Heading Reference System), which is self-developed, is evaluated at low acceleration environment. The designed AHRS adopts the commercial low-cost MEMS sensors. A quaternion-based attitude calculation method, which eliminates singularity with relatively simple algebra, is used. In an attitude correction algorithm, the Kalman filter is used with accelerometers and magnetometers combined. The fabricated AHRS is also evaluated with reference to a COTS(Commercial Off-The-Shelf) AHRS which reports a number of successful applications to a small UAVs. The test results show that the measurements from the fabricated AHRS provide proper attitude output data with acceptable amount of differences(horizontal axis 0.5$^{\circ}$, vertical axis 1.5$^{\circ}$) in test environment.

A Distance Measurement System Using a Laser Pointer and a Monocular Vision Sensor (레이저포인터와 단일카메라를 이용한 거리측정 시스템)

  • Jeon, Yeongsan;Park, Jungkeun;Kang, Taesam;Lee, Jeong-Oog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.422-428
    • /
    • 2013
  • Recently, many unmanned aerial vehicle (UAV) studies have focused on small UAVs, because they are cost effective and suitable in dangerous indoor environments where human entry is limited. Map building through distance measurement is a key technology for the autonomous flight of small UAVs. In many researches for unmanned systems, distance could be measured by using laser range finders or stereo vision sensors. Even though a laser range finder provides accurate distance measurements, it has a disadvantage of high cost. Calculating the distance using a stereo vision sensor is straightforward. However, the sensor is large and heavy, which is not suitable for small UAVs with limited payload. This paper suggests a low-cost distance measurement system using a laser pointer and a monocular vision sensor. A method to measure distance using the suggested system is explained and some experiments on map building are conducted with these distance measurements. The experimental results are compared to the actual data and the reliability of the suggested system is verified.

Medium to Long Range Wireless Video Transmission Scheme in 5.8GHz Band (5.8GHz 대역에서의 중장거리 영상 전송 무선 방식)

  • Paik, Junghoon;Kim, Namho;Ji, Mingi
    • Journal of Broadcast Engineering
    • /
    • v.21 no.5
    • /
    • pp.662-671
    • /
    • 2016
  • In this paper, we propose a wireless video transmission system, providing medium and long communication distance in the 5.8GHz band to decrease the loss of video data. Beamforming with multiple antennas in a radio environment to enable more than 10km communication distance and an image transmission method that combines the retransmission to MCS(modulation and coding scheme) are applied. By applying the proposed method in the indoor environment of 80dB attenuation using the payload size of 1000 bytes, the packet loss rate of at least 0.92% is achieved through the FPING with the time-out of 10ms. The transmission distance of 21.2Km is achieved with the transmission rate of 13Mbps in the outdoor environment.

Accuracy Evaluation of DEM Produced by using KOMPSAT-5 InSAR Image (KOMPSAT 5호 InSAR영상을 이용한 DEM제작 정확도 평가)

  • Han, Seung-Hee
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.39-47
    • /
    • 2017
  • The SAR payload of the KOMPSAT-5 is equipped with an X-band (9.66GHz) microwave-based sensor. Especially, since it has a fixed antenna that can be electronically steered with respect to the azimuth and elevation planes, various applications are expected. This study evaluates the production performance and the accuracy of the DEM by producing DEM using the HR and UH mode images of KOMPSAT-5. To evaluate the production performance of the DEM, the sensitivity of DEM was assessed through a baseline analysis and $2{\pi}$ ambiguity; it was found to have good production performance. In addition, to evaluate the accuracy of the produced DEM, 30 check points were compared with SRTM data. As a result, STDEV ${\pm}15-20m$ accuracy was obtained. If the accuracy of the DEM is improved by adjusting the parameters of the filtering method or phase unwrapping method in the future, it will be possible to widely use the KOMPSAT-5 image for environmental and disaster monitoring.