• Title/Summary/Keyword: data learning process

Search Result 2,087, Processing Time 0.035 seconds

Development of Noise and AI-based Pavement Condition Rating Evaluation System (소음도·인공지능 기반 포장상태등급 평가시스템 개발)

  • Han, Dae-Seok;Kim, Young-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This study developed low-cost and high-efficiency pavement condition monitoring technology to produce the key information required for pavement management. A noise and artificial intelligence-based monitoring system was devised to compensate for the shortcomings of existing high-end equipment that relies on visual information and high-end sensors. From idea establishment to system development, functional definition, information flow, architecture design, and finally, on-site field evaluations were carried out. As a result, confidence in the high level of artificial intelligence evaluation was secured. In addition, hardware and software elements and well-organized guidelines on system utilization were developed. The on-site evaluation process confirmed that non-experts could easily and quickly investigate and visualized the data. The evaluation results could support the management works of road managers. Furthermore, it could improve the completeness of the technologies, such as prior discriminating techniques for external conditions that are not considered in AI learning, system simplification, and variable speed response techniques. This paper presents a new paradigm for pavement monitoring technology that has lasted since the 1960s.

A study on the 3-step classification algorithm for the diagnosis and classification of refrigeration system failures and their types (냉동시스템 고장 진단 및 고장유형 분석을 위한 3단계 분류 알고리즘에 관한 연구)

  • Lee, Kangbae;Park, Sungho;Lee, Hui-Won;Lee, Seung-Jae;Lee, Seung-hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.31-37
    • /
    • 2021
  • As the size of buildings increases due to urbanization due to the development of industry, the need to purify the air and maintain a comfortable indoor environment is also increasing. With the development of monitoring technology for refrigeration systems, it has become possible to manage the amount of electricity consumed in buildings. In particular, refrigeration systems account for about 40% of power consumption in commercial buildings. Therefore, in order to develop the refrigeration system failure diagnosis algorithm in this study, the purpose of this study was to understand the structure of the refrigeration system, collect and analyze data generated during the operation of the refrigeration system, and quickly detect and classify failure situations with various types and severity . In particular, in order to improve the classification accuracy of failure types that are difficult to classify, a three-step diagnosis and classification algorithm was developed and proposed. A model based on SVM and LGBM was presented as a classification model suitable for each stage after a number of experiments and hyper-parameter optimization process. In this study, the characteristics affecting failure were preserved as much as possible, and all failure types, including refrigerant-related failures, which had been difficult in previous studies, were derived with excellent results.

Comparison of Artificial Intelligence Multitask Performance using Object Detection and Foreground Image (물체탐색과 전경영상을 이용한 인공지능 멀티태스크 성능 비교)

  • Jeong, Min Hyuk;Kim, Sang-Kyun;Lee, Jin Young;Choo, Hyon-Gon;Lee, HeeKyung;Cheong, Won-Sik
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.308-317
    • /
    • 2022
  • Researches are underway to efficiently reduce the size of video data transmitted and stored in the image analysis process using deep learning-based machine vision technology. MPEG (Moving Picture Expert Group) has newly established a standardization project called VCM (Video Coding for Machine) and is conducting research on video encoding for machines rather than video encoding for humans. We are researching a multitask that performs various tasks with one image input. The proposed pipeline does not perform all object detection of each task that should precede object detection, but precedes it only once and uses the result as an input for each task. In this paper, we propose a pipeline for efficient multitasking and perform comparative experiments on compression efficiency, execution time, and result accuracy of the input image to check the efficiency. As a result of the experiment, the capacity of the input image decreased by more than 97.5%, while the accuracy of the result decreased slightly, confirming the possibility of efficient multitasking.

A Study on the Automatic Digital DB of Boring Log Using AI (AI를 활용한 시추주상도 자동 디지털 DB화 방안에 관한 연구)

  • Park, Ka-Hyun;Han, Jin-Tae;Yoon, Youngno
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.119-129
    • /
    • 2021
  • The process of constructing the DB in the current geotechnical information DB system needs a lot of human and time resource consumption. In addition, it causes accuracy problems frequently because the current input method is a person viewing the PDF and directly inputting the results. Therefore, this study proposes building an automatic digital DB using AI (artificial intelligence) of boring logs. In order to automatically construct DB for various boring log formats without exception, the boring log forms were classified using the deep learning model ResNet 34 for a total of 6 boring log forms. As a result, the overall accuracy was 99.7, and the ROC_AUC score was 1.0, which separated the boring log forms with very high performance. After that, the text in the PDF is automatically read using the robotic processing automation technique fine-tuned for each form. Furthermore, the general information, strata information, and standard penetration test information were extracted, separated, and saved in the same format provided by the geotechnical information DB system. Finally, the information in the boring log was automatically converted into a DB at a speed of 140 pages per second.

Components for Early Childhood Horticultural Education Program derived from Expert Delphi Research

  • Jeong, Yeojin;Kim, Mijin;Chang, Taegwon;Yun, Sukyoung
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.2
    • /
    • pp.119-135
    • /
    • 2021
  • Background and objective: This study was conducted to identify the components of kindergartener horticultural education by deriving objective components of horticultural education using the Delphi survey method, and then to provide basic data that can be used when creating horticultural programs in the regular curriculum. Methods: A total of 32 experts including professors of early childhood education, kindergarten directors, horticultural therapy professors, and horticultural therapists were selected as the Delphi panel. Of the 32 selected, only 29 answered all three rounds of the surveys. For the first round of the survey, an open-ended questionnaire, was used, and in the second and third rounds closed-ended questionnaires were used. Results: Results indicated that under the category of the goals of horticultural education, there were 7 items related to the current problems of horticultural education, 16 items related to the need for horticultural education in the smart age, 18 items related to the direction of horticultural education, and 5 items related to the areas most suitable for horticulture education for young children in the Nuri Curriculum. Results in the category of the implementation of horticultural education indicated that 2 items related to horticultural education hours, 3 items related to the venue for horticultural education, 2 items related to the activity types applicable to the Nuri Curriculum, and 4 items related to the objects of horticultural activities were derived. As the current problems of horticultural education, the following items were identified: event-oriented activity (M = 4.24) and lack of kindergarten teachers' opportunities for systematic gardening education (M = 4.21). The results related to the necessity of horticultural education indicated the following items: education on respect for life through caring (M = 4.59), emotional intelligence and stability (M = 4.55), directly experience of the growth process of plants (M = 4.55), and development of the five senses (M = 4.55). Finally, within the direction of horticultural education: nurturing the desire to live with nature (M = 4.50), and learning about life (M = 4.44) was identified, which had higher averages. Within the areas of the Nuri Curriculum, which is most consistent with horticultural education, nature exploration (M = 4.69) and the integration of all areas (M = 4.59) were derived as priorities. Also, regarding the implementation of horticultural education, the following items were derived as the priority from the expert group: 30-40 minutes (M = 4.14) and 40-50 minutes (M = 4.14) for class periods, outdoor garden in a kindergarten(M = 4.66) for the venue of gardening education, outside play (M = 4.59) for the activity type, and vegetable crops (M = 4.55) for the objects of gardening activities. Conclusion: It is significant that the goal and implementation of kindergartner horticultural education were objectively derived through collecting opinions of expert panels. Based on the results of this study, a horticultural education program for kindergarten teachers should be implemented.

Development of Block-based Code Generation and Recommendation Model Using Natural Language Processing Model (자연어 처리 모델을 활용한 블록 코드 생성 및 추천 모델 개발)

  • Jeon, In-seong;Song, Ki-Sang
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.3
    • /
    • pp.197-207
    • /
    • 2022
  • In this paper, we develop a machine learning based block code generation and recommendation model for the purpose of reducing cognitive load of learners during coding education that learns the learner's block that has been made in the block programming environment using natural processing model and fine-tuning and then generates and recommends the selectable blocks for the next step. To develop the model, the training dataset was produced by pre-processing 50 block codes that were on the popular block programming language web site 'Entry'. Also, after dividing the pre-processed blocks into training dataset, verification dataset and test dataset, we developed a model that generates block codes based on LSTM, Seq2Seq, and GPT-2 model. In the results of the performance evaluation of the developed model, GPT-2 showed a higher performance than the LSTM and Seq2Seq model in the BLEU and ROUGE scores which measure sentence similarity. The data results generated through the GPT-2 model, show that the performance was relatively similar in the BLEU and ROUGE scores except for the case where the number of blocks was 1 or 17.

The Effect of Creative Education Program Based on AR/VR : Focusing on the Area of Astronomy (AR/VR을 활용한 창의교육 프로그램의 효과 분석 : 천문 영역을 중심으로)

  • Seo, Youngjun;Han, Doyoon;Son, Yunjeong;Heo, Younjeong;Kim, Hyoungbum
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.2
    • /
    • pp.310-321
    • /
    • 2022
  • This study aimed to find out how creative education programs using AR/VR affect student's creative problem-solving skills and class satisfaction. For this purpose, a total of 179 students in 7 classes of the first grade of J High school located in the chungbuk region were the subjects of this study. The data were analyzed by performing two-dependent samples (t-test) based on the difference between the pre- and post-scores of creative problem-solving ability test, and the value of class satisfaction was analyzed and interpret using descriptive statistics and interview. The results of this study are as follows. First, except for 'execution', 'problem discovery and analysis', 'idea generation', 'execution plan', 'conviction and communication', and 'innovation tendency' showed statistically significant results. Second, in terms of class satisfaction of the creative education program, it was an average of 3.75 and it was difficult for learners to derive creative ideas, outputs, and results through groups within a given time in regular class, but generally showed a positive response. Therefore, it was confirmed that the creative education program using AR/VR increased student's learning motivation and interest in the process of generation or expanding ideas to solve problems like educational effect of STEAM.

Analysis of Eco-Citizenship Contents Elements in Home Economics Textbooks for the Introduction of Ecological Transformation Education (생태전환교육 도입을 위한 가정과 교과서의 생태시민성 내용 요소 분석)

  • Cho, Sung Mi;Park, Mi Jeong
    • Journal of Korean Home Economics Education Association
    • /
    • v.35 no.2
    • /
    • pp.1-20
    • /
    • 2023
  • The purpose of this study is to extract and analyze ecological citizenship elements in the middle school home economics textbook used in the 2015 national curriculum for the introduction of ecological transformation education in the 2022 national curriculum. As a result of the analysis, the content analysis of the ecological citizenship factor was validated by six experts who are incumbent middle school home economics teachers, and the S-CVI value was 0.97, ensuring the validity of the ecological citizenship factor analysis. The results of analyzing 242 ecological citizenship factors extracted from home economics textbooks are as follows. According to the content area of the 2015 national home economics curriculum, the 'human development and family' area had the highest presence of ecological citizenship factors followed by the 'resource management and self-reliance' area and the 'home life and safety' area. Among the categories of ecological citizenship factors, 'value⋅attitude' was the most frequent, followed by 'process⋅function' and 'knowledge⋅understanding'. For each textbook composition system, ecological citizenship elements were extracted in the order of pictures, text, activities, and supplementary materials. There was a significant variation in the number of ecological citizenship factors among publishers, indicating the importance of the textbook writers' perception, interpretation, and direction of writing. Based on these analysis results, ecological citizenship teaching and learning activities applicable to home economics education were presented. This study highlights the potential for practicing ecological citizenship education in line with the new orientation of the curriculum on ecological transformation education through home economics education. Furthermore, it provides valuable baseline data for the development and implementation of textbooks for the 2022 national curriculum.

Tunnel-lining Back Analysis Based on Artificial Neural Network for Characterizing Seepage and Rock Mass Load (투수 및 이완하중 파악을 위한 터널 라이닝의 인공신경망 역해석)

  • Kong, Jung-Sik;Choi, Joon-Woo;Park, Hyun-Il;Nam, Seok-Woo;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.107-118
    • /
    • 2006
  • Among a variety of influencing components, time-variant seepage and long-term underground motion are important to understand the abnormal behavior of tunnels. Excessiveness of these two components could be the direct cause of severe damage on tunnels, however, it is not easy to quantify the effect of these on the behavior of tunnels. These parameters can be estimated by using inverse methods once the appropriate relationship between inputs and results is clarified. Various inverse methods or parameter estimation techniques such as artificial neural network and least square method can be used depending on the characteristics of given problems. Numerical analyses, experiments, or monitoring results are frequently used to prepare a set of inputs and results to establish the back analysis models. In this study, a back analysis method has been developed to estimate geotechnically hard-to-known parameters such as permeability of tunnel filter, underground water table, long-term rock mass load, size of damaged zone associated with seepage and long-term underground motion. The artificial neural network technique is adopted and the numerical models developed in the first part are used to prepare a set of data for learning process. Tunnel behavior, especially the displacements of the lining, has been exclusively investigated for the back analysis.

CNN Model for Prediction of Tensile Strength based on Pore Distribution Characteristics in Cement Paste (시멘트풀의 공극분포특성에 기반한 인장강도 예측 CNN 모델)

  • Sung-Wook Hong;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.339-346
    • /
    • 2023
  • The uncertainties of microstructural features affect the properties of materials. Numerous pores that are randomly distributed in materials make it difficult to predict the properties of the materials. The distribution of pores in cementitious materials has a great influence on their mechanical properties. Existing studies focus on analyzing the statistical relationship between pore distribution and material responses, and the correlation between them is not yet fully determined. In this study, the mechanical response of cementitious materials is predicted through an image-based data approach using a convolutional neural network (CNN), and the correlation between pore distribution and material response is analyzed. The dataset for machine learning consists of high-resolution micro-CT images and the properties (tensile strength) of cementitious materials. The microstructures are characterized, and the mechanical properties are evaluated through 2D direct tension simulations using the phase-field fracture model. The attributes of input images are analyzed to identify the spot with the greatest influence on the prediction of material response through CNN. The correlation between pore distribution characteristics and material response is analyzed by comparing the active regions during the CNN process and the pore distribution.