• Title/Summary/Keyword: data architecture

Search Result 7,026, Processing Time 0.03 seconds

Study on Threshold Scheme based Secure Secret Sharing P2P System (임계 방식 기반 안전 비밀조각 공유 P2P 시스템 연구)

  • Choi, Cheong-Hyeon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.21-33
    • /
    • 2022
  • This paper is to suggest the secure secret sharing system in order to outstandingly reduce the damage caused by the leakage of the corporate secret. This research system is suggested as efficient P2P distributed system kept from the centrally controlled server scheme. Even the bitcoin circulation system is also based on P2P distribution scheme recenly. This research has designed the secure circulation of the secret shares produced by Threshold Shamir Secret Sharing scheme instead of the shares specified in the torrent file using the simple, highly scalable and fast transferring torrent P2P distribution structure and its protocol. In addition, this research has studied to apply both Shamir Threshold Secret Sharing scheme and the securely strong multiple user authentication based on Collaborative Threshold Autentication scheme. The secure transmission of secret data is protected as using the efficient symmetric encryption with the session secret key which is safely exchanged by the public key encryption. Also it is safer against the leakage because the secret key is effectively alive only for short lifetime like a session. Especially the characteristics of this proposed system is effectively to apply the threshold secret sharing scheme into efficient torrent P2P distributed system without modifying its architecture of the torrent system. In addition, this system guaranttes the confidentiality in distributing the secret file using the efficient symmetric encryption scheme, which the session key is securely exchanged using the public key encryption scheme. In this system, the devices to be taken out can be dynamically registered as an user. This scalability allows to apply the confidentiality and the authentication even to dynamically registerred users.

The Fault Diagnosis Model of Ship Fuel System Equipment Reflecting Time Dependency in Conv1D Algorithm Based on the Convolution Network (합성곱 네트워크 기반의 Conv1D 알고리즘에서 시간 종속성을 반영한 선박 연료계통 장비의 고장 진단 모델)

  • Kim, Hyung-Jin;Kim, Kwang-Sik;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.367-374
    • /
    • 2022
  • The purpose of this study was to propose a deep learning algorithm that applies to the fault diagnosis of fuel pumps and purifiers of autonomous ships. A deep learning algorithm reflecting the time dependence of the measured signal was configured, and the failure pattern was trained using the vibration signal, measured in the equipment's regular operation and failure state. Considering the sequential time-dependence of deterioration implied in the vibration signal, this study adopts Conv1D with sliding window computation for fault detection. The time dependence was also reflected, by transferring the measured signal from two-dimensional to three-dimensional. Additionally, the optimal values of the hyper-parameters of the Conv1D model were determined, using the grid search technique. Finally, the results show that the proposed data preprocessing method as well as the Conv1D model, can reflect the sequential dependency between the fault and its effect on the measured signal, and appropriately perform anomaly as well as failure detection, of the equipment chosen for application.

Replay Attack based Neutralization Method for DJI UAV Detection/Identification Systems (DJI UAV 탐지·식별 시스템 대상 재전송 공격 기반 무력화 방식)

  • Seungoh Seo;Yonggu Lee;Sehoon Lee;Seongyeol Oh;Junyoung Son
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.133-143
    • /
    • 2023
  • As drones (also known as UAV) become popular with advanced information and communication technology (ICT), they have been utilized for various fields (agriculture, architecture, and so on). However, malicious attackers with advanced drones may pose a threat to critical national infrastructures. Thus, anti-drone systems have been developed to respond to drone threats. In particular, remote identification data (R-ID)-based UAV detection and identification systems that detect and identify illegal drones with R-ID broadcasted by drones have been developed, and are widely employed worldwide. However, this R-ID-based UAV detection/identification system is vulnerable to security due to wireless broadcast characteristics. In this paper, we analyze the security vulnerabilities of DJI Aeroscope, a representative example of the R-ID-based UAV detection and identification system, and propose a replay-attack-based neutralization method using the analyzed vulnerabilities. To validate the proposed method, it is implemented as a software program, and verified against four types of attacks in real test environments. The results demonstrate that the proposed neutralization method is an effective neutralization method for R-ID-based UAV detection and identification systems.

Derivation of Dynamic Characteristic Values for Multi-degree-of-freedom Frame Structures based on Frequency Response Function(FRF) (주파수응답함수 기반 다자유도 골조 구조물의 동특성치 도출 및 구조모델링 적용 )

  • So-Yeon Kim;Min-Young Kim;Seung-Jae Lee;Kyoung-Kyu Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • In the seismic design of structures, seismic forces are calculated based on structural models and analysis. In order to accurately address the dynamic characteristics of the actual structure in the structural model, calibration based on actual measurements is required. In this study, a 4-story frame test specimen was manufactured to simulate frame building, accelerometers were attached at each floor, and 1-axis shaking table test was performed. The natural period of the specimen was similar to that of the actual 4 story frame building, and the columns were designed to behave with double-curvature having the infinite stiffness of the horizontal members. To investigate the effects seismic waves characteristics, historical and artificial excitations with various frequencies and acceleration magnitudes were applied. The natural frequencies, damping ratios, and mode shapes were obtained using frequency response functions obtained from dynamic response signals, and the mode vector deviations according to the input seismic waves were verified using the Mode assurance criterion (MAC). In addition, the damping ratios obtained from the vibration tests were applied to the structural model, and the method with refined dynamic characteristics was validated by comparing the analysis results with the experimental data.

Photochemical Conversion of NOX in Atmosphere by Photocatalyst Coated Mortar (광촉매 코팅한 모르타르를 이용한 대기 중 NOX의 광화학적 변환)

  • Hyeon Jin;Kyong Ku Yun;Hajin Choi;Kyo-Seon Kim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.240-246
    • /
    • 2023
  • This study was performed to convert NOx in atmosphere by photochemical reaction utilizing the eco-friendly solar energy. The mortar specimen coated with photocatalyst was fabricated and the photochemical conversion efficiency of NOx was analyzed. The photocatalyst coated concrete was fabricated by first adding TiO2 photocatalyst on the bottom of mold first and next adding cement mortar and, then, curing the concrete mortar. The grease was sprayed on the bottom of mold in advance so that the concrete can be demolded easily after curing. The conversion efficiencies of NOx by photochemical reactions were investigated systematically by changing the process variable conditions of amount of TiO2 coating, UV-A light intensity, total gas flow rate, relative humidity and initial NOx concentration. It was confirmed that the photocatalyst coated concrete fabricated in this study could convert NOx successfully for various process conditions in atmosphere. In future, we believe this research result can be utilized as basic data to design the infrastructure of building, tunnel and road for controlling efficiently the air pollutants such as NOx, SOx, and VOCs.

Vegetation Classification and Ecological Characteristics of Black Locust (Robinia pseudoacacia L.) Plantations in Gyeongbuk Province, Korea (경북지방 아까시나무 조림지의 식생유형과 생태적 특성)

  • Jae-Soon Song;Hak-Yun Kim;Jun-Soo Kim;Seung-Hwan Oh;Hyun-Je Cho
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.11-22
    • /
    • 2023
  • This study was established to provide basic information necessary for ecological management to restore the naturalness of black locust (Robinia pseudoacacia L.) plantations located in the mountains of Gyeongbuk, Korea. Using vegetation data collected from 200 black locust stands, vegetation types were classified using the TWINSPAN method, the spatial arrangement status according to the environmental gradient was identified through DCA analysis, and a synoptic table of communities was prepared based on the diagnostic species determined by determining community fidelity (Φ) for each vegetation type. The vegetation types were classified into seven types, namely, Quercus mongolica-Polygonatum odoratum var. pluriflorum type, Castanea crenata-Smilax china type, Clematis apiifolia-Lonicera japonica type, Rosa multiflora-Artemisia indica type, Quercus variabilis-Lindera glauca type, Ulmus parvifolia-Celtis sinensis type, and Prunus padus-Celastrus flagellaris type. These types usually reflected differences in complex factors such as altitude, moisture regime, successional stage, and disturbance regime. The mean relative importance value of the constituent species was highest for black locust(39.7), but oaks such as Quercus variabilis, Q. serrata, Q. mongolica, Q. acutissima, and Q. aliena were also identified as important constituent species with high relative importance values, indicating their potential for successional trends. In addition, the total percent cover of constituent species by vegetation type, life form composition, species diversity index, and indicator species were compared.

The Design and implementation of parallel processing system using the $Nios^{(R)}$ II embedded processor ($Nios^{(R)}$ II 임베디드 프로세서를 사용한 병렬처리 시스템의 설계 및 구현)

  • Lee, Si-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.97-103
    • /
    • 2009
  • In this thesis, we discuss the implementation of parallel processing system which is able to get a high degree of efficiency(size, cost, performance and flexibility) by using $Nios^{(R)}$ II(32bit RISC(Reduced Instruction Set Computer) processor) embedded processor in DE2-$70^{(R)}$ reference board. The designed Parallel processing system is master-slave, shared memory and MIMD(Mu1tiple Instruction-Multiple Data stream) architecture with 4-processor. For performance test of system, N-point FFT is used. The result is represented speed-up as follow; in the case of using 2-processor(core), speed-up is shown as average 1.8 times as 1-processor's. When 4-processor, the speed-up is shown as average 2.4 times as it's.

Characteristics of Environmental Color Image Vocabulary for Public Healthcare Facility (공공보건시설 환경색채이미지 어휘 특성)

  • Park, Heykyung;Oh, Jiyoung
    • Korea Science and Art Forum
    • /
    • v.31
    • /
    • pp.171-180
    • /
    • 2017
  • The purpose of this study is to analyze the characteristics of color image for establishing the color environment contributing to the promotion of public health in the public health facilities and to utilize it as data of public health color plan and index development. For this purpose, the results of the previous precedent studies were integrated and public health facilities were classified into medical facilities (general hospitals), health facilities (public health centers), and sub - healing facilities (elderly care facilities). We visited 18 public health facilities in total, measured the environmental color of with a spectroscopic, compared the results and the precedent studies results, and identified color image characteristics and future supplement points. The results are as follows. First, the previous studies related to the environment color image vocabulary of the public health facilities, it prefer comfortable, bright and positive image. Second, as a result of direct measurement the environmental color of the public health facilities, it is found that most of them use the high brightness and low saturation color of Y series. Third, as a result of analyzing vocabulary of environmental color image of public health facilities, 'natural' image showed the highest frequency, and other images such as 'gentle' and 'decent' appeared. It was difficult to understand the characteristics of the color image vocabularies of public health facilities. This study is a convergence study of color science and environmental design, and it extends the scope of multidisciplinary research related to design and it will be helpful in environmental planning on user's emotion.

Efficient Implementation of NIST LWC SPARKLE on 64-Bit ARMv8 (ARMv8 환경에서 NIST LWC SPARKLE 효율적 구현)

  • Hanbeom Shin;Gyusang Kim;Myeonghoon Lee;Insung Kim;Sunyeop Kim;Donggeun Kwon;Seonggyeom Kim;Seogchung Seo;Seokhie Hong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.401-410
    • /
    • 2023
  • In this paper, we propose optimization methods for implementing SPARKLE, one of the NIST LWC finalists, on a 64-bit ARMv8 processor. The proposed methods consist of two approaches: an implementation using ARM A64 instructions and another using NEON ASIMD instructions. The A64-based implementation is optimized by performing register scheduling to efficiently utilize the available registers on the ARMv8 architecture. By utilizing the optimized A64-based implementation, we can achieve speeds that are 1.69 to 1.81 times faster than the C reference implementation on a Raspberry Pi 4B. The ASIMD-based implementation, on the other hand, optimizes data by parallelizing the ARX-boxes to perform more than three of them concurrently through a single vector instruction. While the general speed of the optimized ASIMD-based implementation is lower than that of the A64-based implementation, it only slows down by 1.2 times compared to the 2.1 times slowdown observed in the A64-based implementation as the block size increases from SPARKLE256 to SPARKLE512. This is an advantage of the ASIMD-based implementation. Therefore, the ASIMD-based implementation is more efficient for SPARKLE variant block cipher or permutation designs with larger block sizes than the original SPARKLE, making it a useful resource.

Research study on cognitive IoT platform for fog computing in industrial Internet of Things (산업용 사물인터넷에서 포그 컴퓨팅을 위한 인지 IoT 플랫폼 조사연구)

  • Sunghyuck Hong
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.1
    • /
    • pp.69-75
    • /
    • 2024
  • This paper proposes an innovative cognitive IoT framework specifically designed for fog computing (FC) in the context of industrial Internet of Things (IIoT). The discourse in this paper is centered on the intricate design and functional architecture of the Cognitive IoT platform. A crucial feature of this platform is the integration of machine learning (ML) and artificial intelligence (AI), which enhances its operational flexibility and compatibility with a wide range of industrial applications. An exemplary application of this platform is highlighted through the Predictive Maintenance-as-a-Service (PdM-as-a-Service) model, which focuses on real-time monitoring of machine conditions. This model transcends traditional maintenance approaches by leveraging real-time data analytics for maintenance and management operations. Empirical results substantiate the platform's effectiveness within a fog computing milieu, thereby illustrating its transformative potential in the domain of industrial IoT applications. Furthermore, the paper delineates the inherent challenges and prospective research trajectories in the spheres of Cognitive IoT and Fog Computing within the ambit of Industrial Internet of Things (IIoT).