• Title/Summary/Keyword: data architecture

Search Result 7,026, Processing Time 0.034 seconds

A Methodology for Integrating Security into the Automotive Development Process (자동차 개발 프로세스에서의 보안 내재화 방법론)

  • Jeong, Seungyeon;Kang, Sooyoung;Kim, Seungjoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.12
    • /
    • pp.387-402
    • /
    • 2020
  • Conventional automotive development has mainly focused on ensuring correctness and safety and security has been relatively neglected. However, as the number of automotive hacking cases has increased due to the increased Internet connectivity of automobiles, international organizations such as the United Nations Economic Commission for Europe(UNECE) are preparing cybersecurity regulations to ensure security for automotive development. As with other IT products, automotive cybersecurity regulation also emphasize the concept of "Security by Design", which considers security from the beginning of development. In particular, since automotive development has a long lifecycle and complex supply chain, it is very difficult to change the architecture after development, and thus Security by Design is much more important than existing IT products. The problem, however, is that no specific methodology for Security by Design has been proposed on automotive development process. This paper, therefore, proposes a specific methodology for Security by Design on Automotive development. Through this methodology, automotive manufacturers can simultaneously consider aspects of functional safety, and security in automotive development process, and will also be able to respond to the upcoming certification of UNECE automotive cybersecurity regulations.

A Study on the Changes in Residential Environments after Residential Environments Improvement Projects (주거환경개선사업이후 주거 환경 변화에 관한 연구 - 대구광역시 주거환경개선사업의 물리적 환경 분석을 중심으로 -)

  • Kim, Young-Hwa;Lee, Sang-Hong
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.10
    • /
    • pp.3-12
    • /
    • 2018
  • This research aims at analyzing the changes in residential environment after a residential environment improvement project focusing on the analysis into the physical environment of a residential environment improvement project, and examining in what direction the changes by residents' own efforts occurred after public support, such as infrastructure. The present residence development method has become different from the previous pulling down method and is focused on regeneration. By examining in what direction the target residence is being changed because of the development by residents' own efforts after the government's public investment at this time, this study also aims at investigating the direction to develop a guideline for residential improvement for later improvement of deteriorated residence. As for the contents of the analysis, changes in public support, such as infrastructure, and other areas after the residential environment improvement project were compared and analyzed from the land use, street system, and condition of buildings before the residential environment improvement project through field survey, geographic information system(GIS), registered land and building data and so on. The biggest change since the support from the government was that at the beginning of the project, the application of special provision of building laws and different financial supports led to lots of newly built buildings. Since then, their number has decreased rapidly, and in most cases, there have been some changes in part, such as changes in the use of land or repair of disposal tanks. Most newly built buildings were multi-household houses, and it has caused road capacity and parking lot capacity, etc., to be exceeded, which has worsened the pleasantness of the living environment. In addition, other problems have also appeared, for example, the lack of residence supporting facilities yet with a higher level of residential density. Regarding the changes in the residential environment after the residential environment improvement project, maintenance of houses were conducted in some degree as diverse alleviation policies to improve poor residence, yet the absence of the guideline for the direction of developing the whole district has made the residence environment more dense and deteriorated. To solve these problems, in advance to a residential improvement project, specific management methods based on short-, mid- and long-term plans for the direction of development by residents' own efforts and a sustainable guideline seem to be necessary.

A Study on the optimized Performance Designing of the Window of the Apartment based on the Annual Energy Demand Analysis according to the Azimuth Angle applying the Solar Heat Gain Coefficient of the Window (창호에 SHGC를 반영한 공동주택의 방위각별 에너지 효율성 평가를 통한 합리적인 창호 계획 방안 연구)

  • Lee, Jang-bum
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.11
    • /
    • pp.25-34
    • /
    • 2019
  • It is important to design windows in a reasonable way considering the performance characteristics of the elements of the window rather than just to increase the thermal energy performance of the window. In this study, the Heat-transfer Coefficient as insulation performance of the windows and together with the grade of the glass's SHGC (Solar Heat Gain Coefficient) were analyzed to relate to the energy efficiency performance of the building by azimuth angle. Based on this basic study, the Heat-transfer Coefficient of windows and the SHGC rating of glass were applied to the unit plan of apartment building, and the Heating and Cooling Demand were analyzed by azimuth angle. Apartment plan types were divided into 2 types of Non-extension and extension of balcony. The designPH analysis data derived from the variant of the Heat-transfer Coefficient and SHGC, were put into PHPP(Passive House Planning Package) to analyze precisely the energy efficiency(Heating and Cooling Demands) of the building by azimuth angle. In addition, assuming the 'ㅁ' shape layout, energy efficiency performance and potential of PV Panel installation also were analyzed by floors and azimuth angle, reflecting the shading effects by surrounding buildings. As the results of the study, the effect of Heat Gain by SHGC was greater than Heat Loss due to the Heat-transfer Coefficient. So it is more effective to increase SHGC to satisfy the same Heating Demand, and increasing SHGC made possible to design windows with low Heat-transfer Coefficient. It was also revealed that the difference in annual Heating and Cooling Demands between the low, mid and high floor households is significantly high. In addition to it, the installation of PV Panel in the form of a shading canopy over the window reduces the Cooling Load while at the same time producing electricity, and also confirmed that absolute thermal energy efficiency could not be maximized without controlling the thermal bridge and ventilation problems as important heat loss factors.

Development of Noise and AI-based Pavement Condition Rating Evaluation System (소음도·인공지능 기반 포장상태등급 평가시스템 개발)

  • Han, Dae-Seok;Kim, Young-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This study developed low-cost and high-efficiency pavement condition monitoring technology to produce the key information required for pavement management. A noise and artificial intelligence-based monitoring system was devised to compensate for the shortcomings of existing high-end equipment that relies on visual information and high-end sensors. From idea establishment to system development, functional definition, information flow, architecture design, and finally, on-site field evaluations were carried out. As a result, confidence in the high level of artificial intelligence evaluation was secured. In addition, hardware and software elements and well-organized guidelines on system utilization were developed. The on-site evaluation process confirmed that non-experts could easily and quickly investigate and visualized the data. The evaluation results could support the management works of road managers. Furthermore, it could improve the completeness of the technologies, such as prior discriminating techniques for external conditions that are not considered in AI learning, system simplification, and variable speed response techniques. This paper presents a new paradigm for pavement monitoring technology that has lasted since the 1960s.

Extracting Risk Factors and Analyzing AHP Importance for Planning Phase of Real Estate Development Projects in Myanmar (미얀마 부동산 개발형사업 기획단계의 리스크 요인 추출 및 AHP 중요도 분석)

  • Kim, Sooyong;Chung, Jaihoon;Yang, Jinkook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.2
    • /
    • pp.3-11
    • /
    • 2021
  • Myanmar is an undeveloped country with high development value among Asian countries. Therefore, various countries including the U.S. are considering entering the market. In this respect, demand for real estate development project is forecast to grow on increased inflow of foreigners and Myanmar's economic growth. However, Myanmar is a high-risk country in terms of overseas companies, including national risk. In this study, we conducted an in-depth interview with experts (law, finance, technology, and local experts) after analyzing data on Myanmar to extract risk-causing factors. Through this, 106 risk factors were extracted, and the final risk classification system was established by conducting three-time groupings using the affinity diagramming. And the relative importance of each factor was presented using the analytic hierarchy process (AHP) technique. As a result, the country-related risk, the fund-related risk, and the pre-sale-related risk were highly important. The research results are expected to provide risk management standards to companies entering the Myanmar real estate development type project.

A Research on the Parametric Design Method in Pre-Design Phase for BIM application (BIM 적용을 위한 기획설계 단계의 파라메트릭 디자인기법에 대한 연구)

  • Ha, Seung-Beom
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.92-98
    • /
    • 2021
  • Modern society needs constantly the rationality and the efficiency, and this flow of the time has become the paradigm of the whole society. This paradigm has a large influence on the architectural design and industry. Modern technology represented by the development of digital instrument and Information Technology through internet has created and developed two big trend, Parametric Design and BIM(Building information Modeling) in the architectural design and industry. These technologies, though created for different reasons, have a lot of influence on the architectural design and industry for a common purpose such as efficiency and rationality across the boundaries. In this context, this research will be embodied through the example about how parametric design should be made in the beginning of pre-design phase for BIM application. This research aims to consider the design process of Walt Diseny Consert Hall, the work of Frank O. Ghery, a deconstructivism architect, and to embody the shape of National Nederlanden Building in Prague, the Czech Republic, using parametric design tool in pre-design phase. This research later aims to be used as the basic data that can be applied to the entire architectural industry from a planning and a detailed design to a construction for the ultimate BIM application beyond the range of parametric design in pre-design phase. Later, the plan using the parametric design algorithm and BIM application in construction document phase will be conducted.

A Study on the Performance Evaluation of Water(wash out) Resistance of 5-Type Repair Materials in Water Leakage of Underground Concrete Structures (지하 콘크리트 구조물 누수부위에 시공되는 5계열 보수재료의 유실 저항 성능 평가 연구)

  • Kim, Soo-Yeon;Yoo, Jae-Yong;Oh, Sang-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.61-68
    • /
    • 2020
  • In this study, the international standard ISO TS 16774 Part 3 Test Method for Water (wash out) Resistance and KS F 4935 「Sealant Injection type for water leakage maintenance of adhesive flexible rubber asphalt series」, which are standardized as a quality control method of injection type repair materials used for water leakage cracks in underground concrete structures, are currently used in Korea. As a result, considering the performance criteria of "mass change rate -0.1%" stipulated in KS F 4935, the remaining 13 types repair materials, excluding RG-2 of synthetic rubber and UG-1 of urethane, need to be reviewed for stabilization of the loss resistance due to the flow of ground water. The results of this study are determined to be available as a basic indicator for the selection of repair materials used for cracks in concrete structures. In addition, it is expected that the results of this study can be utilized as reference data that can be reflected in the improvement of the quality of repair materials that will be researched and developed later.

Derivation of Important Factors the Resilience of Purchased Land in the Riparian Zone Using AHP Analysis (AHP분석을 활용한 수변구역 매수토지의 회복탄력성 중요인자 도출)

  • Back, Seung-Jun;Lee, Chan;Jang, Jae-Hoon;Kang, Hyun-Kyung;Lee, Soo-Dong
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.4
    • /
    • pp.387-397
    • /
    • 2021
  • This study aims to present reference data necessary for developing evaluation indicators to analyze the actual resilience of purchased land by investigating the factors that affect the restoration of the purchased land in the riparian zone and quantitatively calculating its importance. The main results are as follows. Firstly, this study identified 34 potential resilience factors through a literature review encompassing domestic and overseas studies and derived seven ecological responsiveness factors, six physical responsiveness factors, and four managerial responsiveness factors through the Delphi survey. Secondly, reliability analysis and Analytic Hierarchy Process (AHP) analysis derived the following important factors: structural stability of the vegetation restored in the purchased land, species diversity of wildlife, structural stability of wildlife, the size of restored wetland after purchase, number of plant species, and the land cover status adjacent to the purchased land. The study results are expected to be helpful information for ecological restoration and management plans reflecting reinforcing factors for resilience at each stage of land purchase, restoration, and management.

A Study on the Effect of the Orifice Shape on Oil Outflow from a Damaged Ship (사고 선박 손상부 형상이 기름 유출량에 미치는 영향 연구)

  • Park, Il-Ryong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.620-631
    • /
    • 2022
  • This paper shows the numerical prediction of the change in oil outflow rate according to the orifice shape of a damaged ship by using the computational fluid dynamics (CFD) analysis method. It also provides discharge coefficients for various orifice shapes to be used in theoretical prediction approaches. The oil outflow from the model ship was analyzed using a multiphase flow method under the condition that the Froude and Reynolds number similitudes were satisfied. The present numerical results were verified by comparing them with the available experimental data. Along with the aspect ratio of the orifice and the wall thickness of the cargo tank, the effects of the orifice shapes defined by mathematical figures on the oil outflow were investigated. To consider more realistic situations, the investigation of the ef ect of the crushed iron plate around the damaged part was also included. The numerical results confirmed the change in oil outflow time for various shapes of the damaged part of the oil tank, and discharge coefficients that quantify the viscous effects of those orifice shapes were extracted. To verify the predicted discharge coefficients, they were applied to an oil spill estimation equation. As a result, a good agreement between the CFD and theoretical results was obtained.

Comparison of Prediction Accuracy Between Classification and Convolution Algorithm in Fault Diagnosis of Rotatory Machines at Varying Speed (회전수가 변하는 기기의 고장진단에 있어서 특성 기반 분류와 합성곱 기반 알고리즘의 예측 정확도 비교)

  • Moon, Ki-Yeong;Kim, Hyung-Jin;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.280-288
    • /
    • 2022
  • This study examined the diagnostics of abnormalities and faults of equipment, whose rotational speed changes even during regular operation. The purpose of this study was to suggest a procedure that can properly apply machine learning to the time series data, comprising non-stationary characteristics as the rotational speed changes. Anomaly and fault diagnosis was performed using machine learning: k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), and Random Forest. To compare the diagnostic accuracy, an autoencoder was used for anomaly detection and a convolution based Conv1D was additionally used for fault diagnosis. Feature vectors comprising statistical and frequency attributes were extracted, and normalization & dimensional reduction were applied to the extracted feature vectors. Changes in the diagnostic accuracy of machine learning according to feature selection, normalization, and dimensional reduction are explained. The hyperparameter optimization process and the layered structure are also described for each algorithm. Finally, results show that machine learning can accurately diagnose the failure of a variable-rotation machine under the appropriate feature treatment, although the convolution algorithms have been widely applied to the considered problem.