• Title/Summary/Keyword: data analysis - solar system

Search Result 377, Processing Time 0.029 seconds

Computational Heat Transfer Analysis of High Temperature Solar Receiver (수치해석기법을 이용한 고온태양열 흡수기의 열성능 분석)

  • Kim, Tae-Jun;Oh, Sang-June;Lee, Jin-Gyu;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.49-54
    • /
    • 2009
  • This study focus on verification of the thermal efficiency of volumetric receiver with $5kW_{th}$ Dish-type solar thermal system. Spiral flow path shaped on receiver and working fluid(steam) flow along the this flow path. Porous material for radiation-thermal conversion used in former researches are substituted with the stainless steel wall installed along the spiral shaped flow path. Numerical analysis for the flow path and temperature distributions are carried out. Numerical results are compared with experimental data. Using the numerical model, the heat transfer characteristics of spiral type receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.

  • PDF

Modeling and Power Analysis of Solar Cell Array for Kompsat 1 (다목적실용위성 1호 태양전지 모델링 및 궤도특성 해석)

  • Jeong,Gyu-Beom;Lee,Sang-Uk;Choe,Wan-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.67-72
    • /
    • 2003
  • In this paper, solar cell array of KOMPSAT 1 was modeled and analyzed. The modeling results of solar array were achieved by neural algorithm, which is a powerful nonlinear system modeling tool. Using solar cell array modeling, the solar cell array was analyzed and verified by simulation considering solar cell data of KOMPSAT 1. The characteristics curves and power generation of the solar array are analyzed by using the modeling.

Study on Status of Solar Astronomy in North Korea

  • Kim, Sujin;Yang, Hong-Jin;Chung, Jong-Kyun;Yim, Insung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.63.1-63.1
    • /
    • 2021
  • We present status of solar astronomy in North Korea through analysis of research papers written by North Korea scientists. For the study, we collected 42 papers published in North Korea and international journals. We have analyzed the papers statistically according to three criteria such as research subject, research field, and research members. The main research subjects are the sunspot (28%), observation system (21%), and space environments (19%). The research fields are distributed with data analysis (50%), numerical method (29%), and instrument development (21%). There have been 25 and 9 researchers in the solar astronomy and space environment, respectively since 1995. North Korea's solar research activities were also investigated in three area: instrument, solar physics, and international research linkage. PAO(Pyongyang Astronomical Observatory) has operated two of sunspot telescope and solar horizontal telescope for spectroscopy and polarimetry, but there is no specific information on solar radio telescopes. North Korea has cooperated in solar research with Europe and China. We expect that the results of this study will be used as useful resource in supporting astronomical cooperation between South and North Korea in the future.

  • PDF

Basic Design and Performance Analysis of an Solar Absorption Chiller (태양열 구동 흡수식 냉동기의 기본설계 및 성능분석)

  • Baek, N.C.;Yoon, E.S.;Joo, M.C.;Jeong, S.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.107-112
    • /
    • 1998
  • Basic design of a solar driven absorption cooling machine(SDACM) with a cooling capacity of 5 USRT was carried out. The SDACM is a single effect cycle driven by low temperature hot water from solar collectors. The SDACM design data were calculated by the steady state simulation program which was developed in this study The variation of COP and cooling capacity of the SDACM were investigated at different off-design conditions. Both the cooling capacity and the system COP were improved with decreasing cooling water temperature. If hot water temperature was increased, the cooling capacity was improved but the system COP was found to be decreased. The decrease of the system COP were basically caused by increased thermal loads in the system components.

  • PDF

An experimental performance analysis of a cold region stationary photovoltaic system

  • Choi, Wongyu;Warren, Ryan D.;Pate, Michael B.
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.1-28
    • /
    • 2016
  • A grid-connected photovoltaic (PV) system comprised of multicrystalline silicon (mc-Si) modules was installed in a cold climate region in the U.S. This roof-mounted stationary PV system is a real-world application of PV for building energy generation in International Energy Conservation Code (IECC) Climate Zone 5 (and possibly similar climate zones such as 6, 7 and 8), and it served the purposes of research, demonstration, and education. The importance of this work is highlighted by the fact that there has been less emphasis on solar PV system in this region of the U.S. because of climate and latitude challenges. The system is equipped with an extensive data acquisition system capable of collecting performance and meteorological data while visually displaying real-time and historical data through an interactive online interface. Experimental data was collected and analyzed for the system over a one-year period with the focus of the study being on measurements of power production, energy generation, and efficiency. The annual average daily solar insolation incident upon the array was found to be $4.37kWh/m^2$. During the first year of operation, the PV system provided 5,801 kWh (1,264 kWh/kWp) of usable AC electrical energy, and it was found to operate at an annual average conversion efficiency and PR of 10.6 percent and 0.79, respectively. The annual average DC to AC conversion efficiency of the inverter was found to be 94 percent.

Analysis of Maximum Solar Radiation on Inclined Surfaces for the Installation of Solar Thermal Systems in Korea Using the Optimum Installation Angle (국내 태양열시스템 설치를 위한 시스템 최적 설치각 산출을 통한 최대 경사면일사량 분석)

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.47-54
    • /
    • 2009
  • The amount of incident rays over inclination according to direction has been widely utilized as important data m installing solar thermal systems. To optimize the incident solar radiation, the slope, that is the angle between the plane surface in question and the horizontal, and the solar azimuth angles are needed for these solar thermal systems. This is because the performance of the solar thermal systems in much affected by angle and direction of incident rays. Recognizing that factors mentioned above are of importance, actual experiment on the moving route of the sun have been performed in this research to obtain the angle of inclination with which the maximum incident rays can be absorbed. After all, the standard for designing highly optimized solar thermal systems will be provided for designers and employees working in the solar collector related industries.

Analysis of of Horizontal Global Radiation and Cloud Cover in Korea (국내 수평면 전일사량과 운량 분석)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.124-129
    • /
    • 2011
  • Since the horizontal global radiation and cloud cover are a main factor for designing any solar energy system, it is necessary to evaluate its characteristics all over the country. The work presented here are the investigation of horizontal global radiation and cloud cover in Korea. The data utilized in the investigation consist of horizontal global radiation and cloud cover collected for 27 years(1982.12~2008.12) at measuring stations across the country. The analysis shows that the annual-average daily horizontal global radiation is $3.61kWh/m^2$ and the annual-average daily cloud cover is 5.1 in Korea. We also constructed the contour map of cloud cover in Korea by interpolating actually measured data across the country.

  • PDF

Performance Analysis of Photovoltaic Power System in Saudi Arabia (사우디아라비아 태양광 발전 시스템의 성능 분석)

  • Oh, Wonwook;Kang, Soyeon;Chan, Sung-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.1
    • /
    • pp.81-90
    • /
    • 2017
  • We have analyzed the performance of 58 kWp photovoltaic (PV) power systems installed in Jeddah, Saudi Arabia. Performance ratio (PR) of 3 PV systems with 3 desert-type PV modules using monitoring data for 1 year showed 85.5% on average. Annual degradation rate of 5 individual modules achieved 0.26%, the regression model using monitoring data for the specified interval of one year showed 0.22%. Root mean square error (RMSE) of 6 big data analysis models for power output prediction in May 2016 was analyzed 2.94% using a support vector regression model.

Efficiency analysis of PV tracking system with PSA algorithm (PSA 알고리즘에 의한 태양광 추적시스템의 효율분석)

  • Back, Jung-Woo;Ko, Jae-Sub;Choi, Jung-Sik;Jang, Mi-Geum;Kang, Sung-Jun;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.412-415
    • /
    • 2009
  • This paper analyzes efficiency of photovoltaic(PV) tracking system using position solar algorithm(PSA). Solar location tracking system is needed for efficiently and intensively using PV system independent of environmental condition. PV tracking system of program method is presented a high tracking accuracy without the wrong operating in rapidly changed insolation by the clouds and atmospheric condition. Therefore, this paper analyzes efficiency of PV system using PSA algorithm for more correct position tracking of solar. Also, controlled altitude angle and azimuth angle by applied algorithm is compared with data of korea astronomy observatory. And this paper analyzes the tracking error and roves the validity of applied algorithm.

  • PDF

PSCAD/EMTDC Based Modeling of a Grid-Connected Photovoltaic Generation System (PSCAD/EMTDC를 이용한 계통연계형 태양광발전시스템의 모델링)

  • Kim, Seul-Ki;Jeon, Jin-Hong;Kim, Eung-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.204-207
    • /
    • 2004
  • The paper proposes a simulation model of grid-connected photovoltaic generation system (PV system) using on PSCAD/EMTDC, a reliable power system and apparatus transient analysis program. A equivalent circuit model of a solar cell is used for modeling solar array. A series of parameters required for array modeling are deduced from general specification data of a solar module. A PWM voltage source inverter (VSI) model is presented and current control scheme is implemented for VSI control. A maximum power point tracking (MPPT) technique is applied for controlling the PV system. Simulation case study provides V-I and V-P characteristics of solar array and PV system control performance for irradiation changes.

  • PDF