• 제목/요약/키워드: dark halo

검색결과 79건 처리시간 0.018초

Quantum Entanglement of Dark Matter

  • Lee, Jae-Weon
    • Journal of the Korean Physical Society
    • /
    • 제73권10호
    • /
    • pp.1596-1602
    • /
    • 2018
  • We suggest that the dark matter in the universe has quantum entanglement if the dark matter is a Bose-Einstein condensation of ultra-light scalar particles. In this theory, any two regions of a galaxy are quantum entangled due to the quantum nature of the condensate. We calculate the entanglement entropy of a typical galactic halo, which turns out to be at least O(ln(M/m)), where M is the mass of the halo and m is the mass of a dark matter particle. The entanglement can be inferred from the rotation curves of the galaxy or the interference patterns of the dark matter density.

무거운 헤일로를 가진 구형 은하의 역학 모형 (DYNAMICAL MODELS OF SPHERICAL GALAXIES WITH MASSIVE HALO)

  • 천문석;고훈성;손영종
    • Journal of Astronomy and Space Sciences
    • /
    • 제20권1호
    • /
    • pp.63-82
    • /
    • 2003
  • Schwarzschild의 선형 계획법을 사용하여 평형상태에서의 구형은하를 기술하는 비 충돌 볼쯔만 방정식의 일반적인 해를 얻었다. 이 계산으로부터 de Vaucouleurs의 광도 법칙을 만족하고 무거운 헤일로를 포함하는 등방성 구형은하의 존재를 확인할 수 있었다. 타원은하에서 속도 분산 곡선이 편평하거나 서서히 증가하는 현상은 암흑물질에 의한 질량대 광도비의 증가로 해석할 수 있다. 이런 경우 암흑물질의 밀도 분포는 core반경이 은하의 유효반경보다 훨씬 작은 값을 갖는다는 사실을 확인할 수 있었다.

Disruption time scale of merged halos in a dense cluster environment

  • Shin, Jihye;Taylor, James E.;Peng, Eric
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.60.1-60.1
    • /
    • 2016
  • To obtain a reliable estimate of the cold dark matter (CDM) substructure mass function in a dense cluster environment, one needs to understand how long a merged halo can survive within the host halo. Measuring disruption time scale of merged halos in a dense cluster environment, we attempt to construct the realistic CDM mass function that can be compared with stellar mass functions to get a stellar-to-halo mass ratio. For this, we performed a set of high-resolution simulations of cold dark matter halos with properties similar to the Virgo cluster. Field halos outside the main halo are detected using a Friend-of-Friend algorithm with a linking length of 0.02. To trace the sub-halo structures even after the merging with the main halo, we use their core structures that are defined to be the most 10% bound particles.

  • PDF

The evolution of dark matter halo profiles in a cosmological context

  • Park, Jinwoo;Choi, Hoseung;Yi, Sukyoung
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.73.3-73.3
    • /
    • 2017
  • Environment has a significant impact on the evolution of dark halo profiles. We used a cosmological N-body simulation based on WMAP5 cosmology to study environmental effects on halo profiles. Host haloes located in sparse regions are highly concentrated, and more massive haloes have higher concentration index. This is because mass accretion affects only the outer part of the halo and consequently increase the virial radius having no effect on the scale radius. Conversely, host haloes located in dense regions have low concentration index. This is because frequent mergers affect even the inner part of the halo. So, scale radius increases with the growth of virial radius. Evolutions of subhalo profiles are essentially different from those of host haloes because subhaloes undergo tidal stripping. The stripping begins once a subhalo approaches closer than ~3 virial radii of the host halo. During the stripping, the inner part of the subhalo keep following NFW profile, but the mass of the outer part gradually decreases. As a result, when the subhalo reaches the pericenter of its host, only about inner 30% of the subhalo follows the NFW profile.

  • PDF

The Spin-Orbit Alignment of Dark Matter Halo Pairs: Dependence on the Halo Mass and Environment

  • An, Sung-Ho;Yoon, Suk-Jin
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.35.1-35.1
    • /
    • 2019
  • We present a statistical analysis on the spin-orbit alignment of dark matter halo pairs in cosmological simulations. The alignment is defined as the angular concurrence between the halo spin vector (${\vec{S}}$) and the orbital angular momentum vector (${\vec{L}}$) of the major companion. We identify interacting halo pairs with the mass ratios from 1:1 to 1:3, with the halo masses of 10.8 < $Log(M_{halo}/M_{sun}$) < 13.0, and with the separations smaller than a sum of their virial radii ($R_{12}<R_{1,vir}+R_{2,vir}$). Based on the total energy ($E_{12}$), the pairs are classified into flybys ($E_{12}$ > 0) and mergers ($E_{12}{\leq}0$). By measuring the angle (${\theta}_{SL}$) between ${\vec{S}}$ and ${\vec{L}}$, we confirm a strong spin-orbit alignment signal such that the halo spin is preferentially aligned with the orbital angular momentum of the major companion. We find that the signal of the spin-orbit alignment for the flyby is weaker than that for the merger. We also find an unexpected excess signal of the spin-orbit alignment at $cos{\theta}_{SL}{\sim}0.25$. Both the strength of the spin-orbit alignment and the degree of the excess depend only on the environment. We conclude that the halo spin is determined by the accretion in a preferred direction set by the ambient environment.

  • PDF

A Comparison of Halo Merger History for Two Different Simulation Codes : GADGET-2 and RAMSES

  • 정인태;이석영
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.39.2-39.2
    • /
    • 2012
  • We present our study on a comparison of dark matter halo merger history from the runs using different numerical simulation codes. To analyze the uncertainty caused by the use of different N-body calculation methods, we compare the results from two cosmological hydrodynamic simulation codes GADGET-2 and RAMSES, which use a TreePM algorithm and the Adaptive Mesh Refinement(AMR) technique respectively. We perform cosmological dark matter-only simulations with the same parameter set and initial condition for both. The dark matter halo mass functions from two simulation runs correspond well with each other, except for lower mass haloes. The discrepancy on the low-mass haloes in turn causes a notable difference in halo merger rate, especially for the case of extremely minor merger. The result from GADGET-2 predicts that most haloes undergo more number of mergers with small haloes than that from RAMSES, independent of halo mass and environment. However, in the context of the study on galaxy evolution, such extreme minor mergers generally do not have strong effects on galaxy properties such as morphology or star formation history. Hence, we suggest that this uncertainty could be quantitatively negligible, and the results from two simulations are reliable even with only minor difference in merger history.

  • PDF

On the physical origins for the two-halo conformity

  • Seo, Seongu;Yoon, Suk-Jin
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.74.1-74.1
    • /
    • 2017
  • The two-halo conformity is that if a central galaxy in a dark matter halo is quenched in star formation, the central galaxies in other neighboring halos (within ~ 4 Mpc) even with no causal contact seem conformed to be quenched. The galactic similarity ranging far beyond the virial radius of each dark matter halo cannot be explained by known environmental effects (ram pressure, tidal interaction, etc.). Here, using a cosmological hydrodynamic simulation, we put forward new physical origins for the phenomenon; the back-splash galaxies scenario and the halo assembly bias scenario. We discuss the relative importance of the two explanations on a quantitative basis.

  • PDF

Tracing Dark Matter Halo Mass Using Central Velocity Dispersion of Galaxies

  • Seo, Gangil;Sohn, Jubee;Lee, Myung Gyoon
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.73.4-73.4
    • /
    • 2019
  • Most of the galaxy mass is known to be occupied by dark matter. However, it is difficult to directly measure the mass and distribution of dark matter in a galaxy. Recently, the velocity dispersion of the stellar population in a galaxy's center has been suggested as a possible probe of the mass of the dark matter halo. In this study, we test and verify this hypothesis using the kinematics of the satellite galaxies of isolated galaxies. We use the Friends-of-Friends (FoF)algorithm to build a catalog of primary galaxies and their satellite galaxies from the Sloan Digital Sky Survey (SDSS) DR 12. We calculate the dynamical mass of the primary galaxies from the velocity dispersion of their satellite galaxies. We then investigate the correlation between the dynamical mass and the central velocity dispersion of the primary galaxies. The stellar velocity dispersion of the central host galaxies has a strong linear correlation with the velocity dispersion of their satellite galaxies. Also, the stellar velocity dispersion of the central galaxy is strongly correlated with the dynamical mass of the galaxy, which can be described as a power law. The results of this study show that the central velocity dispersion of the primary galaxies is a good proxy for tracing the mass of dark matter halo.

  • PDF

Dark Matter Content in Three Galactic Globular Clusters - 47 Tuc, NGC 1851, and M 15

  • Lee, Joowon;Kim, SungsooS.;Shin, Jihye
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.80.3-81
    • /
    • 2015
  • Globular clusters (GCs) are known to have a very small amount of or no dark matter (DM). Several studies propose that GCs may have formed in individual dark halos. Thus, some of the current GCs might have a non-negligible DM content. Using the Fokker-Planck (FP) calculations, we investigate the dynamical evolution of the Galactic GCs residing in mini DM halo. We trace the initial amount of DM of 47 Tuc, NGC 1851, and M15, which is a 'disk/bulge' cluster, an 'old halo' cluster, and a 'young halo' cluster, respectively. We find that the three GCs have initially insignificant amounts of DM, less than 20 percent of the initial stellar mass of the each cluster.

  • PDF

From dark matter to baryons in a simulated universe via machine learning

  • Jo, Yongseok
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.50.2-50.2
    • /
    • 2020
  • The dark matter (DM) only simulations have been exploited to study e.g. the large scale structures and properties of a halo. In a baryon side, the high-resolution hydrodynamic simulation such as IllustrisTNG has helped extend the physics of gas along with stars and DM. However, the expansive computational cost of hydrodynamic simulations limits the size of a simulated universe whereas DM-only simulations can generate the universe of the cosmological horizon size approximately. I will introduce a pipeline to estimate baryonic properties of a galaxy inside a dark matter (DM) halo in DM-only simulations using a machine trained on high-resolution hydrodynamic simulations. An extremely randomized tree (ERT) algorithm is used together with multiple novel improvements such as a refined error function in machine training and two-stage learning. By applying our machine to the DM-only simulation of a large volume, I then validate the pipeline that rapidly generates a galaxy catalog from a DM halo catalog using the correlations the machine found in hydrodynamic simulations. I will discuss the benefits that machine-based approaches like this entail, as well as suggestions to raise the scientific potential of such approaches.

  • PDF