• Title/Summary/Keyword: dark adaptation

Search Result 48, Processing Time 0.027 seconds

Genetic Analysis of Photoinhibition in Barley

  • Chun, Jong-Un
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.4
    • /
    • pp.296-302
    • /
    • 2001
  • Winter cereals are acclimated during wintering, and thereafter their freezing resistance is increased. In order to analyze inheritance and heritabilities for photoinhibition of photosynthesis by high light intensity under low temperature, and to evaluate the relationship between low temperature-induced photoinhibition and winter survival, 4 parental half diallel crosses were used. The detached leaves of 7-8cm long from plants grown for 35 and 55 days were placed on wet filter paper and placed in trays at 5$^{\circ}C$ cold room with 1,200 $\mu$mol $m^{-2}$ $s^{-1}$ PPFD. Chlorophyll fluorescence was measured with a chlorophyll fluorescence system after dark adaptation for 30 min. The Fv/Fm of 35day old plants was reduced from 0.714 in the control leaves to 0.409 and 0.368 following photoinhibitory treatment of 6h and 8h and the CVs were increased from 0.8% to 22.2-22.3%. The Fv/Fm of 55-day old plants was reduced from 0.775 in the control leaves to 0.485 and 0.439 following photoinhibitory treatment of 10h and 12h, respectively. According to half diallel cross analysis, Reno and Dongbori 1 (highly resistant to photoinhibition) was dominant, but Oweolbori (susceptible to photoinhibition) was recessive, and photoinhibition showed partial dominance with highly additive gene action. Dongbori 1 showed the greatest GCA effects for photoinhibition, and GCA/SCA ratios (8.7-22.3 times) indicated that the additive variance for the character was more important. Winter survival in barley crosses was positively correlated with resistance to photoinhibition and significantly fitted by linear regression ($R^2$=0.751$^{**}$-0.779$^{**}$). The chlorophyll fluorescence measured by Fv/Fm has been found to be highly inheritable and very useful in evaluating relative levels of freezing resistance in barley.ley.

  • PDF

Increase of Visual sensitivity by Zinc, Taurine, and Hypothermic-effect in Bullfrog's Eye (황소개구리 안구에서의 아연, 타우린, 저온효과에 의한 시각 감수성 증진)

  • Kim, Hyun Jung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.1
    • /
    • pp.23-33
    • /
    • 2007
  • It has been reported high concentrations of zinc and taurine in ocular tissue, especially the retina-choroid, and the presence of physiological levels of zinc and taurine in these tissues seem essential for their normal function. In addition, several studies have reported temperature as another effector to the visual sensitivity. But, in spite of many studies, there are still remained many questions about their function and correlation in visual adaptation system. The purpose of present study was to clarify these points using electroretinogram(ERG) recording and absorption spectra scanning, before and after zinc and taurine treatments and hypothermic-effect in bullfrog(Rana catesbeiana) which is one of the poikilothermal animal. The optimal zinc concentration used in this study was determined $10^{-4}M$ while the optimal taurine concentration was 10-5 M, and temperature change for hypothermic-effect went through '$25^{\circ}C {\rightarrow}0^{\circ}C{\rightarrow}25^{\circ}C$'. In ERG recording, it is obtained that dark-adapted threshold became elevated and b-wave amplitudes was increased with zinc and taurine treatment and hypothermic-effect. In absorption spectra scanning, there is distinct absorbance increment over the whole spectral range(400~750 nm) after zinc and taurine treatment and hypothermic-effect. Furthermore there are some synergism effects between zinc and taurine as well as between zinc and hypothermic-effect as a result of co-treatment, respectively.

  • PDF

Influence of Phenobarbital on the Circadian Rhythm of Opiate Receptor in Rat Brain (백서의 뇌내 Opiate 수용체의 일중 변동에 미치는 Phenobarbital의 영향)

  • Park, Yeoung-Gul;Kim, Kee-Won;Cho, Kyu-Park
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.128-141
    • /
    • 1985
  • To investigate the influence of phenobarbital sodium on the action of morphine and on the diurnal rhythms of both opiate receptor binding and ${\beta}-endorphin$ contents, the amount of specifically bound $(^3H)$-morphine and immunoreactive ${\beta}-endorphin$ were measured in the midbrain of phenobarbital-treated rats at 4h intervals in a day. Rats were housed and adapted to a controlled cycle of either 12 h light-12 h dark or 24 h constant dark. After 3 weeks of adaptation, 0.5 ml of physiological saline or phenobarbital sodium (20mg/kg/day, i.p.) were administered twice a day for 2 weeks. Highly significant diurnal rhythms of opiate receptor binding and ${\beta}-endorphin$ were present in rat midbrain. In control group, the peak of maximum $(^3H)$-morphine binding was observed at 22:00 h, whereas the peak of ${\beta}-endorphin$ content was found at 06:00 h. Even in the absence of time cues these diurnal rhythms persisted, but they were highly modified with respect to the wave form as well as differences in the timing of peak and nadir. In the phenobarbital-treated group, these diurnal rhythms were also modified in shape, phase and amplitude, as well as in timing of peak and nadir. In this group, 24 h mean of opiate receptor binding was significantly decreased, while the 24 h mean level of ${\beta}-endorphin$ content was highly increased. However, Kd values in all experimental groups did not change. This indicates that differences in binding were not due to changes in the affinity, but in the number of binding sites. Statistical analysis of regression line indicates that changes of receptor binding were closely correlated with the changes of ${\beta}-endorphin$ content. These results suggest that phenobarbital may influence the action of morphine by changing the number of opiate receptors and that the modification of diurnal rhythm of opiate receptor by the agent is possibly due to changes of ${\beta}-endorphin$ content.

  • PDF

MACROPHYLLA/ROTUNDIFOLIA3 gene of Arabidopsis controls leaf index during leaf development (잎의 발달단계의 leaf index를 조절하는 애기장대 MACROPHYLLA/ROTUNDIFOLIA3 유전자)

  • Jun, Sang-Eun;Chandrasekhar, Thummala;Cho, Kiu-Hyung;Yi, Young-Byung;Hyung, Nam-In;Nam, Jae-Sung;Kim, Gyung-Tae
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.285-292
    • /
    • 2011
  • In plants, heteroblasty reflects the morphological adaptation during leaf development according to the external environmental condition and affects the final shape and size of organ. Among parameters displaying heteroblasty, leaf index is an important and typical one to represent the shape and size of simple leaves. Leaf index factor is eventually determined by cell proliferation and cell expansion in leaf blades. Although several regulators and their mechanisms controlling the cell division and cell expansion in leaf development have been studied, it does not fully provide a blueprint of organ formation and morphogenesis during environmental changes. To investigate genes and their mechanisms controlling leaf index during leaf development, we carried out molecular-genetic and physiological experiments using an Arabidopsis mutant. In this study, we identified macrophylla (mac) which had enlarged leaves. In detail, the mac mutant showed alteration in leaf index and cell expansion in direction of width and length, resulting in not only modification of leaf shape but also disruption of heteroblasty. Molecular-genetic studies indicated that mac mutant had point mutation in ROTUDIFOLIA3 (ROT3) gene involved in brassinosteroid biosynthesis and was an allele of rot3-1 mutant. We named it mac/rot3-5 mutant. The expression of ROT3 gene was controlled by negative feedback inhibition by the treatment of brassinosteroid hormone, suggesting that ROT3 gene was involved in brassinosteroid biosynthesis. In dark condition, in addition, the expression of ROT3 gene was up-regulated and mac/rot3-5 mutant showed lower response, compare to wild type in petiole elongation. This study suggests that ROT3 gene has an important role in control of leaf index during leaf expansion process for proper environmental adaptation, such as shade avoidance syndrome, via the control of brassinosteroid biosynthesis.

Blue-light Induces the Selective Cell Death of Photoreceptors in Mouse Retina (청색광에 의한 마우스 망막손상에서 선택적 광수용세포의 사멸)

  • Kang, Seo-young;Hong, Ji Eun;Choi, Eun jung;Lyu, Jungmook
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.21 no.1
    • /
    • pp.69-76
    • /
    • 2016
  • Purpose: The study was conducted to determine that photoreceptors of mouse having pigment in RPE(retinal pigment epithelium) can be damaged by blue-light and apoptosis of specific cells among photoreceptors are induced by blue-light, and to assist the investigation of AMD(Age-related macular degeneration) mechanisms and development of AMD drugs. Methods: C57Black mice were injured by irradiating $2800{\pm}10lux$ of 463 nm LED for 6 hours after 24 hours dark adaptation and eyes were enucleated 1, 3, 7 days. Damage of retina induced by blue-light was determined by western blotting GFAP(Glial fibrillary acidic protein) expression. In the light-injured retina, cell death of photoreceptors was determined by TUNEL(Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay. ERK(Extracellular signal-regulated kinases), JNK, and SRC(sarcoma) expression were assessed by western blotting to determine regulated pathway. Blue light-injured retina were immunostained with antibodies against Opsin and Rhodopsin as markers of photoreceptors to compared the damage cone cells with rod cells. Results: After 1, 3 and 7 days from exposure to blue-light, thickness of retina was more decreased than control, and more decreased at nuclear layer than at outer plexiform layer and GFAP expression was increased day 1 after blue-light injured. While phosphorylated ERK and SRC protein expressions at day 1 were increased after blue-light injured, phosphorylated c-JUN was decreased. Fluorescence intensity analysis showed that markers of cone and rod cells were decreased after blue-light injured and Opsin was more decreased than Rhodopsin. Conclusions: The study suggests possibilities that the blue-light promotes retinal damage and causes apoptotic cell death via ERK and SRC pathway in mouse retina, and blue-light retinal damage is more induced cone cells apoptosis than rod cells directly.

Effects of Early Heat Conditioning on Performance in Broilers exposed to Heat Stress (사전 고온 적응이 고온 스트레스를 받은 육계의 생산성에 미치는 영향)

  • Yoon, HyungSook;Hwangbo, Jong;Yang, Young-Rok;Kim, Jimin;Kim, Yeon-Hwa;Park, Byungsung;Choi, Yang-Ho
    • Korean Journal of Poultry Science
    • /
    • v.41 no.4
    • /
    • pp.297-303
    • /
    • 2014
  • Heat manipulation at early age has been known to help chickens cope with heat stress later in life. The present study was conducted to determine the effects of early heat conditioning at 5 days of age on performance in broilers when re-exposed to heat stress later in life. Day-old, 256 Arbor Acre boiler chicks were housed in two identical rooms where all broilers were exposed to a 23-h light: 1-h dark cycle throughout the study and provided with feed and water ad libitum. At the age of 5 days, one group was exposed to $37^{\circ}C$ for 24 hours and then returned to the temperature at which control birds were maintained (early heat condition group) while the other was maintained without heat modulation (Control). On 21 days, broilers were regrouped into 4 groups (CON+CON: control+control; CON+HS: control+heat stress; HC+CON: heat conditioning+control; HC+HS: heat conditioning+heat stress), and given 7 days for adaptation. On 28 days, birds in one room were exposed to heat stress ($21^{\circ}C{\rightarrow}31^{\circ}C$) for 3 days whereas those in the other were at room temperature. Heat stress resulted in decreased feed intake, water intake, and body weight gain (P<0.05), but increased rectal temperature and mortality (P<0.05). No beneficial effects of heat conditioning were detected when broilers were exposed to heat stress again at later in life. The present results were discussed together with other studies regarding possible differences in methods such as ages of breeders and strains, which may have resulted in the failure of heat conditioning to help broilers resist heat stress.

Effects of Repeated High Ambient Temperature on Performance in Broilers Heat-Conditioned at an Early Age (반복적인 고온환경이 사전고온 적응한 육계의 생산성에 미치는 영향)

  • Hwangbo, Jong;Yang, Young-Rok;Yoon, HyungSook;Kim, Jimin;Park, Byungsung;Choi, Hee Chul;Choi, Yang-Ho
    • Korean Journal of Poultry Science
    • /
    • v.42 no.3
    • /
    • pp.257-265
    • /
    • 2015
  • Heat conditioning at an early age has been known to help chickens cope with heat stress later in life. The present study was conducted to determine the effects of heat conditioning at 5 days of age in broilers repeatedly exposed to high ambient temperature later in life. A total of 256 day-old Arbor Acre boiler chicks were housed in two identical rooms with a 23-h light/1-h dark cycle and provided with feed and water ad libitum. At 5 days of age, the birds in one room were exposed to $37^{\circ}C$ for 24 hours, while those in the other room served as controls. On day 21, half of the birds in each room were moved into the other room so that each room contained both control and heat-conditioned birds. After a 7-day adaptation period, the birds in one room were exposed to high ambient temperature ($21^{\circ}C{\rightarrow}31^{\circ}C$) for 3 days, whereas those in the other room were kept at normal temperature. The same 3-day exposure to high ambient temperature was repeated two weeks later. Hence, there were four treatment groups (CON+CON: control+control; CON+HS: control+high ambient temperature; HC+CON: heat conditioning+control; and HC+HS: heat conditioning+high ambient temperature). Repeated heat stress resulted in decreased feed intake, water intake, body weight gain, and spleen weight (p<0.05) and increased rectal temperature (p<0.05), mortality, and plasma corticosterone concentrations. The relative weight of the spleen was increased in the heat-conditioned group (p<0.05). Plasma biochemicals were also influenced by high temperature. Thus, no beneficial effects of heat conditioning at an early age were detected in broilers repeatedly exposed to high ambient temperature later in life.

Effects of Light Quality Using LEDs on Expression Patterns in Brassica rapa Seedlings (LED 광원의 다양한 광질이 배추 유묘의 유전자 발현에 미치는 영향)

  • Kim, Jin A;Lee, Yeon-Hee;Hong, Joon Ki;Hong, Sung-Chang;Lee, Soo In;Choi, Su Gil;Moon, Yi-Seul;Koo, Bon-Sung
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.607-616
    • /
    • 2013
  • Light with two faces, beneficial and harmful effects is an important signal for every living cell. Optimal adaptation to light environment enhances the fitness of an organism and survival in nature. Understandings of light quality and plant growth provide with the economical guides for artificial light sources like LEDs. Compared with those under white light, the 1 week seedlings of Chinese cabbage (Brassica rapa) under monochromic red and blue light showed normal development and growth. In contrast to extremely long and etiolated hypocotyls of the seedlings under dark, those under far-red etiolated were extremely short. Based on the microarray analysis, blue light induced the vigorous development and growth and two fold changes of transcripts than red light condition. To have insight of gene products under different light qualities conditions, GO term enrichments were calculated and each gene according to their GO terms were categorized. The blue and red lights affected the expressions of genes related to biological process. Especially, the genes related to metabolic process and developmental process and plastid and chloroplast in the cellular component category were induced under blue light. This study provided the molecular biological evidence for various light qualities on the growing process of B. rapa.