• Title/Summary/Keyword: damping test

Search Result 964, Processing Time 0.033 seconds

Application of Impact Resonance Test to the Determination of Elastic Modulus and Damping Ratio of Concrete (콘크리트의 탄성계수 및 감쇠비 결정에 대한 충격공진시험 적용)

  • Jung, Beom-Seok;Lee, Jae-Hoan;Kweon, Gi-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.625-632
    • /
    • 2010
  • The moduli of concrete has been determined by various testing methods. The impact resonance (IR) method has been shown to be truly a simple nondestructive testing method which produces consistent results. It is possible to determine not only the modulus but also damping ratio from the IR test. However, the values of elastic modulus and damping ratio of concrete from the test is known to be affected by various test conditions including, specimen support condition, impact steel ball size and sampling rate. In this study, the optimum IR test conditions are suggested and validated experimentally. The test results showed that the recommended test conditions yielded a variation of resonant frequency within ${\pm}0.3%$ and damping ratio ${\pm}10.0%$. In addition, the modulus from the IR test was comparable to that from a static test when the effect of strain amplitude was properly taken into account.

Experimental Evaluation for Damping Ratio Limit of Railway Bridge according to Structure Types (철도교량 구조형식별 감쇠비 하한값 산정을 위한 시험적 연구)

  • Min, Rak-Ki;Sung, Deok-Yong;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.154-161
    • /
    • 2012
  • The damping ratio of railway bridge has become one of the most important issues in dynamic design and dynamic stability of railway bridge. In the present study, laboratory and field test were performed for railway bridges such as a twin I-shaped steel composite girder, PSC box, steel box, PSC, IPC, PRECOM, preflex. The damping ratio of railway bridge according to structure types was estimated by logarithmic decrement method. Therefore, magnitude, frequency and amplitude of load did not affect damping ratio of railway bridge. Also, damping ratio limit of steel composite and PSC bridges was evaluated in 1.0%.

Full-scale test of dampers for stay cable vibration mitigation and improvement measures

  • Zhou, Haijun;Xiang, Ning;Huang, Xigui;Sun, Limin;Xing, Feng;Zhou, Rui
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.489-506
    • /
    • 2018
  • This paper reported test of full-scale cables attached with four types of dampers: viscous damper, passive Magneto-Rheological (MR) damper, friction damper and High Damping Rubber (HDR) damper. The logarithmic decrements of the cable with attached dampers were calculated from free vibration time history. The efficiency ratios of the mean damping ratios of the tested four dampers to theoretical maximum damping ratio were derived, which was very important for practical damper design and parameter optimization. Non-ideal factors affecting damper performance were discussed based on the test results. The effects of concentrated mass and negative stiffness were discussed in detail and compared theoretically. Approximate formulations were derived and verified using numerical solutions. The critical values for non-dimensional concentrated mass coefficient and negative stiffness were identified. Efficiency ratios were approximately 0.6, 0.6, and 0.3 for the viscous damper, passive MR damper and HDR damper, respectively. The efficiency ratio for the friction damper was between 0-1.0. The effects of concentrated mass and negative stiffness on cable damping were positive as both could increase damping ratio; the concentrated mass was more effective than negative stiffness for higher vibration modes.

Evaluation of Domestic Tack-Coating Material's Properties for Asphalt Concrete Pavement (국내 아스팔트 콘크리트 포장용 택코팅제의 기초물성 평가)

  • Lee, Jaejun;Kim, Seung-Hoon;Lim, Jaekyu;Han, Jongmin;Lee, Kwang-Joon
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.121-128
    • /
    • 2014
  • PURPOSES : The objective of this study is to evaluate the tack-coating material's properties using the bitumen bond strength(BBS) test and damping test as function of changed curing times. In this study, bonding strength tests were performed according to the curing time of tack coating materials. METHODS : In order to investigate bonding characteristic of tack coating materials, the Pneumatic Adhesion tensile Testing Instrument(PATTI) device is used to measure the bond strength between the tack coating materials and aggregate substrate based on the AASHTO TP-91. Also, damping test as in situ test was used to determine an appropriate traffic openting time for construction vehicle. Four different tack-coating materials were used in this study. The BBS tests were performed a one hour curing and testing temperatures of $5^{\circ}C$, $15^{\circ}C$, and $25^{\circ}C$. Damping test was conducted at 30min, 60min, 90min, and 120 min of curing times with temperatures of $20^{\circ}C$ and $30^{\circ}C$. RESULTS and CONCLUSIONS : The BBS test results show various bond strength as function of tack coat materials. At the same testing condition, A tack coat material shows almost two times higher than D tack coat materials although both materials are satisfied the criteria of material's physical properties. Also, Dampting test results shows similar trend with BBS test result. The damping test result was significantly changed as function of tack coat materials. Based on this study, the tack coating material's curing time is very important. Therefore, both curing time and the bond strength's characteristic has to be considered in standard specification.

Dynamic Damping Characteristics of Grouthed Coal Ash (약액처리된 석탄회의 동적 감쇠특성)

  • Chun, Byung Sik;Chung, Hyoung Sik;Koh, Yong Il;Lee, Hyoung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.145-151
    • /
    • 1991
  • The final purpose of this study is to examine the uses of coal ash, by-product from thermal power plant as a type of filling-embankment materials and the reuses of ash ponds. In this time, to investigate the dynamic properties, we made the test piece specimen with coal ashes, and obtained the damping ratio. In place(ash pond), the damping property by underground wall was investigated before and after soil improvements. The damping ratio of coal ash test piece specimen of 12% cement is the highest and that of 9% cement or chemical grout, that of 6% cement is in order. In same coal ash test piece, the damping ratio increases with decreasing the void ratio. In conclusion, it could be said that the damping ratio increases with the stiffness of materials. In the ash pond, the damping effect is the most when trench is set through the vibration wave propagation course, and when soil is improved the higher stiffness of the improved soil is, the more damping effect appeared. It is justified to obtain not only the dropping of permeability and the strength increase, but also the damping effect fairly by soil improvements.

  • PDF

Potational Viscous Damping of On-substrate Micromirrors (기판에 인접한 미소거울의 회전 점성감쇠)

  • Kim, Eung-Sam;Han, Ki-Ho;Cho, Young-Ho;Kim, Moon-Uhn
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.5
    • /
    • pp.243-248
    • /
    • 2001
  • In this paper, we present theoretical and experimental study on the viscous damping of the on-substrate torsional micromirrors, oscillating near the silicon substrates. In this theoretical study, we develop theoretical models and test structures for the viscous damping of the on-substrate torsional micromirrors. From a finite element analysis, we estimate the theoretical damping coefficients of the torsional micromirrors. From a finite element analysis, we estimate the theoretical damping coefficients of the torsional micromirrors, fabricated by the surface-micromaching process. From the electrostatic test of the fabricated devices, frequency-dependent rotationalvelocity of the micromirrors has been measured at the atmospheric pressure using devices, frequency-dependent rotational velocity of the micromirrors has been measured at the atmospheric pressure using the Mach-Zehnder interferometer system. Experimental damping coefficients have been extracted from the least square fit of the measured rotational velocity within the filter bandwidth of 150 kHz. We have compared the theoretical values and the experimental results on the dynamic performance of the micromirrors. The theoretical analysis overstimates the resonant frequency in the amount of 15%, while underestimating the viscous damping in the factors of 10%.

  • PDF

Analytical Performance Evaluation of Structure Reinforced with HRS Damper (고감쇠고무와 강재슬릿의 복합 댐퍼로 보강한 건축물의 해석적 성능평가)

  • Kim, Yu-Seong;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.31-38
    • /
    • 2022
  • In this study, an incremental loading test of the HRS(Hybrid Rubber Slit) damper was additionally performed to define the physical characteristics according to the incremental test results, and an analytical study was performed according to the damping design procedure by selecting an example structure. As a result of performing seismic performance evaluation before reinforcement by selecting a RC structure similar to an actual school structure as an example structure, the story drift ratio was satisfied, but some column members collapsed due to bending deformation. In order to secure the seismic performance, the damping design procedure of the HRS damper was presented and performed. As a result of calculating the amount of damping device according to the expected damping ratio and applying it to the example structure, the hysteresis behavior was stable without decrease in strength, and the story drift ratio and the shear force were reduced according to the damping effect. Finally the column members that had collapsed before reinforcement satisfied the LS Level.

A Study On the Property and Influence Factor in Measuring of the Dynamic Stiffness of Damping Materials (바닥충격음 완충재의 동탄성계수 특성 및 측정 영향인자)

  • Kim, Kyoung-Woo;Choi, Hyon-Jung;Kang, Jae-Sik;Yang, Kwan-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1256-1259
    • /
    • 2006
  • The purpose of this study was to investigate the current status and influence factor in measuring the dynamic stiffness of damping materials. The property of the dynamic stiffness of damping materials was tested and analysed in condition such as the size of test samples and the change of relative humidity in heating chamber. Test results showed that the dynamic stiffness of after-heating was lower than that of before-heating in most samples and the change of relative humidity in heating chamber got little influence of the dynamic stiffness. The resonant frequency of test sample decreased $2{\sim}7Hz$ as the decrease of the size of sample. Because it was increased that total mass per unit area of sample, the change of dynamic stiffness had little influence.

  • PDF

Seismic Design and Test of Viscoelastic Dampers in regions of Moderate Seismicity (중진 지역에서의 점탄성 감쇠기설계 및 제진 성능 실험)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.359-366
    • /
    • 1999
  • This paper is a study on the seismic design and test of viscoelastic dampers in regions of moderate seismicity. First moderate seismic waves are generated with measured strong seismic data based on the theory of effective peak acceleration. Then their response spectrums are compared each other to estimate the required damping to attenuate the vibration. As relatively smaller damping is required in the regions of moderate seismicity than in the regions of strong seismicity proper viscoelastic dampers can be designed according to the estimated damping. Finally a test building model is designed and the viscoelastic dampers are installed for the experimental study under moderate and strong earthquakes, It is found that viscoelastic dampers with low damping capacity developed in this study are enough to reduce the building response in regions of moderate seismicity.

  • PDF