• Title/Summary/Keyword: damping properties

Search Result 706, Processing Time 0.024 seconds

Analysis of Reducing Tonal Noise of the Gas Turbine Generator in order to Reduce Underwater Radiated Noise of a Naval Vessel (수중방사소음 저감을 위한 함정용 개스터빈 발전기의 순음 저감 분석)

  • Han, Hyung-Suk;Choi, Ki-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1329-1337
    • /
    • 2009
  • Because the tonal sound of the underwater noise in a naval vessel can be identified from the sub-marine of the enemy, it should be reduced sufficiently. This kind of the noise usually comes from the structure-borne noise of the onboard machine and transfers to the sea through the hull of the ship. The vibration at the high frequency can be reduced sufficiently with damping material. In this paper, the damping coefficient of the steel plate with damping sheet is evaluated by experiment. Using these evaluated properties, the numerical analysis is performed in order to evaluate how much vibration of the generator can be reduced applying damping sheet on the encloser and base of it.

Viscoelastic Damping Treatment Analysis and Aeroelasticity for Vibration Reductions of a Hingeless Composite Helicopter Rotor System (무힌지 복합재 헬리콥터 로터 시스템의 진동 저감을 위한 점탄성 감쇠처리 해석 및 공탄성 연구)

  • Hwang, Ho-Yon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.3
    • /
    • pp.6-14
    • /
    • 2007
  • In this research, vibration reduction and aeroelastic stability of a composite hingeless rotor hub flexure with viscoelastic constrained layer damping treatment(CLDT) were investigated. The composite flexures with viscoelastic CLDT were applied to hingeless rotor system to improve the in-plane stability of the lead-lag motion causing resonance. The modal test was performed and dynamic properties(natural frequency and loss factor) were acquired. Also, complex eigenvalue analysis(SOLlO7) in the NASTRAN structural analysis module was performed and compared with results of the modal test. To insure aeroelastic stability, damping ratio analyses of the hingeless rotor system with CLDT were accomplished at hovering condition due to collective pitch angle changes. Satisfactory results of increasing structural damping and stability were obtained.

  • PDF

Probabilistic free vibration analysis of Goland wing

  • Kumar, Sandeep;Onkar, Amit Kumar;Manjuprasad, M.
    • International Journal of Aerospace System Engineering
    • /
    • v.6 no.2
    • /
    • pp.1-10
    • /
    • 2019
  • In this paper, the probabilistic free vibration analysis of a geometrically coupled cantilever wing with uncertain material properties is carried out using stochastic finite element (SFEM) based on first order perturbation technique. Here, both stiffness and damping of the system are considered as random parameters. The bending and torsional rigidities are assumed as spatially varying second order Gaussian random fields and represented by Karhunen Loeve (K-L) expansion. Here, the expected value, standard deviation, and probability distribution of random natural frequencies and damping ratios are computed. The results obtained from the present approach are also compared with Monte Carlo simulations (MCS). The results show that the uncertain bending rigidity has more influence on the damping ratio and frequency of modes 1 and 3 while uncertain torsional rigidity has more influence on the damping ratio and frequency of modes 2 and 3.

Dynamic Properties of Squeeze Type Mount Using MR Fluid (MR유체를 이용한 스퀴즈모드형 마운트의 동특성)

  • 하종용;안영공;양보석;정석권;김동조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.374-378
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (Magneto-Rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field s strength. In the present work, the performance of the mount was experimentally investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic filed strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

  • PDF

Dynamic Properties of Squeeze Type Mount Using MR Fluid (MR 유체를 이용한 스퀴즈모드형 마운트의 동특성)

  • 안영공
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.490-495
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (magneto-rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field strength. In the present work, the performance of the mount was experimentally Investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic field strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

Application of High Damping Alloys for Vibration Reduction in Rail Joint Bar (방진합금을 적용한 철도레일 이음매판의 진동저감 효과에 관한 연구)

  • Baik, S.H.;Kim, J.C.;Han, D.W.;Baik, J.H.;Kim, T.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.570-573
    • /
    • 2004
  • Conventional methods for reducing vibration in engineering designs may be undesirable in conditions where size or weight must be minimized, or where complex vibration spectra exist. Some alloys with a combination of high damping capacity and good mechanical properties can provide attractive techanical and economical solutions to problems involving seismic, shock and vibration isolation. In this paper, it showed the noise and vibration characteristic was compared conventional rail joint to improved rail joint(damping alloy) for reducing noise and vibration. Its applicability to rail joint is discussed.

  • PDF

Dynamic Mechanical Properties of the Symmetric Laminated high Strength Carbon Fiber Epoxy Composite Thin Beams (대칭 적층한 얇은 고강도 탄소섬유 에폭시 복합재 보의 기계적 동특성)

  • 정광섭;이대길;곽윤근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2123-2138
    • /
    • 1994
  • A study on the dynamic mechanical properties of the high strength carbon fiber epoxy composite beam was carried out. The macromechanical model was used for the theoretical analysis of the symmetric laminated composite beam. The anisotropic plate theory and Bernoulli-Euler beam theory were used to predict the effective flexural elastic modulus and the specific damping capacity of laminated composite beam. The free flexural vibration and torsional vibration tests were carried out to determine the specific damping capacities of the unidirectional laminated composite beam. The vibration tests were performed in a vacuum chamber with laser vibrometer system and electromagnetic hammer to obtain accurate experimental data. From the computational and experimental results, it was found that the theoretical values with the macromechanical analysis and the experimental data of symmetric laminated composite beam were in good agreement.

Dynamic Deformation Characteristics of Fiber Reinforced Soils Using Resonant Column Tests (공진주 시험을 이용한 섬유보강토의 동적변형특성)

  • Chang, Pyoung-Wuck;Heo, Joon;Park, Young-Kon;Cha, Kyung-Seob;Woo, Chull-Woong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.349-352
    • /
    • 2002
  • In this paper, dynamic properties of fiber reinforced soils were investigated at shearing strains between $10^{-4}%\;and\;10^{-1}%$ using resonant column test. Resonant column test has been widely used as a primary laboratory testing technique in investigating dynamic soil properties expressed in term of shear modulus and material damping. At strains above elastic threshold, the variations of shear modulus(G) and damping ratio(D) were investigated. Based on test results, the small strain shear modulus($G_{max}$) and damping ratio($D_{min}$) were determined and the effects of confinement on $G_{max}$ and $D_{min}$ were characterized.

  • PDF

Modulus and Damping Properties of Kaolinite Using Ultrasonic Testing (초음파를 이용한 카올린 점토의 계수 및 감쇠 특성)

  • 민덕기
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.17-24
    • /
    • 2002
  • The objective of the present research is to evaluate the wave propagation velocity and attenuation characteristics of kaolin clay specimens using ultrasonic testing. Test specimens with known initial micro-fabric were prepared using a two-stage slurry consolidation technique. For a known state of stress conditions, initial void ratio, and micro-fabric, a series of experiments were conducted to evaluate the longitudinal wave propagation velocity and associated damping behavior. The effects of major variables involved in ultrasonic testing of cohesive soil were considered in this study. Ultrasonic velocity was not correlated to the microfabric structure under the given consolidated pressure whereas ultrasonic attenuation was affected by the microstructural properties of the specimen.

Measurement of Plate Vibration by Using Phase Signals (위상신호를 이용한 단순평판의 진동계측)

  • 함연수;김정수;김관주
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.949-954
    • /
    • 2000
  • Applicability of the vibration signal phase for predicting the modal damping properties of structures is investigated. For uniform plates with different internal damping levels, the phase delay as a function of the frequency span as well as a function of the distance between the excitation and response measurement points are experimentally obtained. Dependence of the phase characteristics on the amount of structural damping is elucidated -more heavily damped plate shows notably reduced phase delay at intermediate distances. The experimental results compare favorably with analytical predictions, and show much promise for further refinement as a tool for estimating structural properties.

  • PDF