• Title/Summary/Keyword: damping model

Search Result 1,680, Processing Time 0.026 seconds

Effect of soil pile structure interaction on dynamic characteristics of jacket type offshore platforms

  • Asgarian, Behrouz;Shokrgozar, Hamed Rahman;Shahcheraghi, Davoud;Ghasemzadeh, Hasan
    • Coupled systems mechanics
    • /
    • v.1 no.4
    • /
    • pp.381-395
    • /
    • 2012
  • Dynamic response of Pile Supported Structures is highly depended on Soil Pile Structure Interaction. In this paper, by comparison of experimental and numerical dynamic responses of a prototype jacket offshore platform for both hinge based and pile supported boundary conditions, effect of soil-pile-structure interaction on dynamic characteristics of this platform is studied. Jacket and deck of a prototype platform is installed on a hinge-based case first and then platform is installed on eight skirt piles embedded on continuum monolayer sand. Dynamic characteristics of platform in term of natural frequencies, mode shapes and modal damping are compared for both cases. Effects of adding and removing vertical bracing members in top bay of jacket on dynamic characteristics of platform for both boundary conditions are also studied. Numerical simulation of responses for the studied platform is also performed for both mentioned cases using capability of ABAQUS and SACS software. The 3D model using ABAQUS software is created using solid elements for soil and beam elements for jacket, deck and pile members. Mohr-Coulomb failure criterion and pile-soil interface element are used for considering nonlinear pile soil structure interaction. Simplified modeling of soil-pile-structure interaction effect is also studied using SACS software. It is observed that dynamic characteristics of the system changes significantly due to soil-pile-structure interaction. Meanwhile, both of complex and simplified (ABAQUS and SACS, respectively) models can predict this effect accurately for such platforms subjected to dynamic loading in small range of deformation.

Seismic response of steel reinforced concrete spatial frame with irregular section columns under earthquake excitation

  • Xue, Jianyang;Zhou, Chaofeng;Liu, Zuqiang;Qi, Liangjie
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.337-347
    • /
    • 2018
  • This paper presents some shaking table tests conducted on a 1/4-scaled model with 5-story steel reinforced concrete (SRC) spatial frame with irregular section columns under a series of base excitations with gradually increasing acceleration peaks. The test frame was subjected to a sequence of seismic simulation tests including 10 white noise vibrations and 51 seismic simulations. Each seismic simulation was associated with a different level of seismic disaster. Dynamic characteristic, strain response, acceleration response, displacement response, base shear and hysteretic behavior were analyzed. The test results demonstrate that at the end of the loading process, the failure mechanism of SRC frame with irregular section columns is the beam-hinged failure mechanism, which satisfies the seismic code of "strong column-weak beam". With the increase of acceleration peaks, accumulated damage of the frame increases gradually, which induces that the intrinsic frequency decreases whereas the damping ratio increases, and the peaks of acceleration and displacement occur later. During the loading process, torsion deformation appears and the base shear grows fast firstly and then slowly. The hysteretic curves are symmetric and plump, which shows a good capacity of energy dissipation. In summary, SRC frame with irregular section columns can satisfy the seismic requirements of "no collapse under seldom earthquake", which indicates that this structural system is suitable for the construction in the high seismic intensity zone.

Seismic protection of the benchmark highway bridge with passive hybrid control system

  • Saha, Arijit;Saha, Purnachandra;Patro, Sanjaya Kumar
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.227-241
    • /
    • 2018
  • The present paper deals with the optimum performance of the passive hybrid control system for the benchmark highway bridge under the six earthquakes ground motion. The investigation is carried out on a simplified finite element model of the 91/5 highway overcrossing located in Southern California. A viscous fluid damper (known as VFD) or non-linear fluid viscous spring damper has been used as a passive supplement device associated with polynomial friction pendulum isolator (known as PFPI) to form a passive hybrid control system. A parametric study is considered to find out the optimum parameters of the PFPI system for the optimal response of the bridge. The effect of the velocity exponent of the VFD and non-linear FV spring damper on the response of the bridge is carried out by considering different values of velocity exponent. Further, the influences of damping coefficient and vibration period of the dampers are also examined on the response of the bridge. To study the effectiveness of the passive hybrid system on the response of the isolated bridge, it is compared with the corresponding PFPI isolated bridges. The investigation showed that passive supplement damper such as VFD or non-linear FV spring damper associated with PFPI system is significantly reducing the seismic response of the benchmark highway bridge. Further, it is also observed that non-linear FV spring damper hybrid system is a more promising strategy in reducing the response of the bridge compared to the VFD associated hybrid system.

Thermal Dispersion Method for a Medical Ultrasonic Phased Array Transducer (의료용 초음파 위상배열 트랜스듀서의 열 분산 방안)

  • Lee, Wonseok;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.210-218
    • /
    • 2015
  • When the driving voltage of an ultrasound transducer is increased to improve the quality of ultrasound images, heat is generated inside the transducer that can cause patient's skin burn and degradation of transducer performance. Hence, in this paper, a method to disperse the heat of the transducer has been studied. The phased array transducer having 3 MHz center frequency and 32 channels was selected for analyses of the thermal dispersion. First, mechanism of the heat generation was investigated in relation to the transducer operation through theoretical analysis, and material damping and sound pressure amplitude were confirmed to be influential on the heat generation. Further, we investigated the effects of the properties of the materials constituting the transducer on the thermal dispersion through finite element analysis. Based on the analysis results, we determined the thermal properties of the constituent materials that could facilitate the thermal dispersion inside the transducer. The determined thermal properties were applied to the finite element model, and the results showed that the maximum temperature at an acoustic lens contacting with a patient was decreased to 51 % of its initial value.

A Nonlinear Friction Torque Compensation of Servo System with Double Speed Controller (이중 속도 제어 구조에 의한 서보 제어기의 비선형 마찰 토크 보상)

  • Lee Dong-Hee;Choi Cheol;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.612-619
    • /
    • 2004
  • Servo motor systems with ball-screw and timing-belt are widely used in NC, robot, FA and industrial applications. However, the nonlinear friction torque and damping effect in machine elements reduce the control performance. Especially tracking errors in trajectory control and very low velocity control range are serious due to the break-away friction and Stribeck effects. In this paper, a new double speed controller is proposed for compensation of the nonlinear friction torque. The proposed double speed controller has outer speed controller and inner friction torque compensator. The proposed friction torque compensator compensates the nonlinear friction torque with actual speed and speed error information. Due to the actual information for friction torque compensator without parameters and mathematical model of motor, proposed compensator is very simple structure and the stability is very high. The proposed compensator is verified by simulation and experimental results.

A Study on the Optimization of Suspension Characteristics for Improving Running Safety of Railway Vehicle (철도차량 주행안전성 향상을 위한 현가장치 최적화 연구)

  • Lee, Young-Yeob;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.909-914
    • /
    • 2009
  • A suspension is the most prior apparatus to decide vehicle's running safety and ride comfort, also the suspension stiffness is the most important parameter for the designing of the vehicle. Providing the strong stiffness with the primary suspension in order to improve the running safety with high speed, but it causes a problem with a curve running performance of a railway vehicle. Therefore, many studies deal with the optimal value of suspension stiffness. In this paper, we aim to optimize the suspension system to improve running safety by varying stiffness values of railway vehicle suspension. We have proceeded an analysis by design variables which are position, length, width, stiffness and damping coefficients of primary and secondary suspension to optimize the suspension characteristics. As a result of the optimization, we verified that the derailment coefficients of inside and outside of wheel are decreased in comparison with initial model.

Force Control of Main Landing Gear using Hybrid Magneto-Rheological Damper (하이브리드 MR댐퍼를 이용한 주륜 착륙장치 하중제어기법 연구)

  • Hyun, Young-O;Hwang, Jae-Up;Hwang, Jae-Hyuk;Bae, Jae-Sung;Lim, Kyoung-Ho;Kim, Doo-Man;Kim, Tae-Wook;Park, Myung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.315-320
    • /
    • 2010
  • To improve not only the basic performance but also the fail-safe performance, power consumption of the main landing gear for helicopters, a semi-active control landing gear using hybrid MR damper, was introduced in this paper. This damper of the configuration to install a permanent magnet in a electromagnet MR damper, was designed by the trade-off study on permanent magnet location and a magnet field analysis. Force control algorithm which keep the sum of air spring force and damping force at a specified value during landing, was used for the controller. The drop simulations using ADAMS Model for this semi-active control landing gear, were done. The improvement of the preceding performances as the result to evaluate the landing performance by the simulations, has been confirmed.

Dynamic Characteristics Analysis of the Cryogenic Nitrogen Injection of Swirl Injector using POD and DMD (POD와 DMD를 이용한 와류형 분사기의 극저온 질소 분무 동적 특성 분석)

  • Kang, Jeongseok;Sung, Hong-Gye;Sohn, Chae Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.1-9
    • /
    • 2017
  • The cryogenic nitrogen spray of a swirl injector has been numerically investigated using three dimensional LES turbulence model to analyze the dynamic characteristics under supercritical condition. To predict the precise nitrogen properties under supercritical condition, SRK equation of state, Chung's method for viscosity and thermal conductivity and Takahashi's correlation based on Fuller's theory for diffusion coefficient are implemented. The complex flow structures due to interaction between flow field and acoustic field are observed inside and outside the injector under supercritical condition. FFT, POD, and DMD techniques are employed to understand the coherent structures. By implementing the FFT, the dominant frequencies are identified inside and outside the injector. The coherent flow structures related to the dominant frequencies are visualized using the POD and DMD techniques. In addition, the DMD provides the damping coefficient which is related with the instability prediction.

Experimental study on a Cantilever Type Metallic Damper for Seismic Retrofit of Building Structures (건물의 내진보강을 위한 캔틸레버타입 강재댐퍼의 실험)

  • Ahn, Tae-Sang;Kim, Young-Ju;Park, Jin-Hwa;Kim, Hyung-Geun;Jang, Dong-Woon;Oh, Sang-Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.149-161
    • /
    • 2012
  • The use of seismic energy-dissipative devices for passive control is increasing exponentially in the recent years for both new and existing buildings. Use of these devices started in and has been somewhat limited to developed countries. One of the current challenges is to promote the use of seismic dampers in earthquake-prone developing countries by lowering the cost of the devices. This paper proposed a new type of seismic damper based on yielding of a cantilever type metallic element for seismic retrofit of existing and new building structures. The hysteretic behavior and energy dissipation capacity of the proposed damper was investigated using component tests under cyclic loads. The experimental results indicated that the damping device had stable restoring force characteristics and a high energy dissipation capacity. Based on these results, a simple hysteretic model for predicting the load-displacement curve of the seismic damper was proposed.

Evaluation of Dynamic Soil Properties Using Dynamic Tests (동적시험에 의한 동적지반특성 평가)

  • Lee, Myung Jae;Shin, Jong Ho;Kang, Ki Young;Chon, Chun Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.91-102
    • /
    • 1990
  • The representative tests in this study are performed at a selected site which has the soil layers to analyze the safety and economy of the dynamic analysis for the variable soil conditions. Crosshole test and downhole test of small strain level tests and triaxial test of large strain level test are performed in the soil layers, and in the rock layers, crosshole test and downhole in-situ tests and laboratory sonic test are performed to measure the dynamic shear modulus, damping ratio, and Poisson$\acute{s}$ ratio of the soil and the rock. The correlations between the dynamic soil properties from the tests and the basic soil properties are determined through the regression analysis. The representative design value of the soil is determined by probability analysis of the test results. It is determined from the nonlinear stress-strain model in soils, and the value at small strain level is computed in rocks according to the distribution of the type of soils and the affecting variables. The constitutive value is systematized to be utilized in the analysis of the test results, and computation of the input soil data.

  • PDF