• Title/Summary/Keyword: damping matrix

Search Result 215, Processing Time 0.019 seconds

Impedance Parameter Update Method for Dual-arm Manipulator based on Operator's Muscle Activation (조작자 근육 활성도 기반 양팔 로봇의 임피던스 제어 파라미터 갱신 방법)

  • Baek, Chanryul;Cha, Gwangyeol;Kim, Junsik;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.347-352
    • /
    • 2022
  • The paper presents how to update impedance control parameters for dual-arm manipulators using EMG signals and motions of the operator. Since the hand motions of the dual-arm are modeled to be the mass-spring-damper system in this paper, the impedance parameter update method is an important issue to reflect the operator's force. However, task space inertia to be used as the mass parameter goes to infinity if the manipulator approaches a kinematic singularity. To alleviate this issue, the impedance (stiffness and damping) parameters are divided with a diagonal element of the task space inertia. Also, the stiffness and damping matrices are updated using the normalized EMG signals captured from the operator's forearm. Through this process, the motion of the dual-arm manipulator is more stabilized even though it approaches the kinematic singularity.

Study on the Frame Structure Modeling of the Beam Element Formulated by Absolute Nodal Coordinate Approach

  • Takahashi Yoshitaka;Shimizu Nobuyuki;Suzuki Kohei
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.283-291
    • /
    • 2005
  • Accurate seismic analyses of large deformable moving structures are still unsolved problems in the field of earthquake engineering. In order to analyze these problems, the nonlinear finite element method formulated by the absolute nodal coordinate approach is noticed. Because, this formulation has several advantages over the standard procedures on mass matrix, elastic forces and damping forces in the case of large displacement problems. But, it has not been fully studied to build frame structure models by using beam elements in the absolute nodal coordinate formulation. In this paper, we propose the connecting method of the beam elements formulated by the absolute nodal coordinate. The coordinate transformation matrix of this element is introduced into the frame structure. This beam element has the characteristic that the mass matrix and bending stiffiness matrix are constant even if in the case of large displacement problems, and this characteristic is being kept after the transformation. In order to verify the proposed method, we show the numerical simulation results of frame structures for a vibration problem and a large displacement problem.

Finite Element Analysis for Evaluation of Viscous and Eccentricity Effects on Fluid Added Mass and Damping (유체 부가질량 및 감쇠 결정시 점성 및 편심 영향에 대한 유한요소해석)

  • 구경회;이재한
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.21-27
    • /
    • 2003
  • In general, simple fluid added mass method is used for the seismic and vibration analysis of the immersed structure to consider the fluid-structure interaction effect. Actually, the structural response of the immersed structure can be affected by both the fluid added mass and damping caused by the fluid viscosity. These variables appeared as a consistent matrix form with the coupling terms. In this paper, finite element formula for the inviscid fluid case and viscous fluid case are derived from the linearized Navier Stoke's equations. Using the finite element program developed in this paper, the analyses of fluid added mass and damping for the hexagon core structure of the liquid metal reactor are carried out to investigate the effect of fluid viscosity with variation of the fluid gap and Reynolds number. From the analysis results, it is verified that the viscosity significantly affects the fluid added mass and damping as the fluid gap size decrease. From the analysis results of eccentricity effect on the fluid added mass and damping of the concentric cylinders, the fluid added mass increase as the eccentricity increases, however the fluid damping increases only when the eccentricity is very severe.

Stability analysis of pump using finite element method (유한요소법에 의한 펌프축계의 안정성해석)

  • 양보석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.31-40
    • /
    • 1986
  • With the tendency toward high speed and high pressure in centrifugal pumps, the problem of sub-synchronous vibration has arisen, caused by the hydraulic forces of the working fluid, such as wearring, balance piston, impeller, etc.. These forces can drastically alter the rotor critical speeds and stability characteristics, and can be acted significant destabilizing forces. For preventing such self-excited vibration, the desing of the rotor system needs, which would secure the stability of the machine. In this paper, a procedure is presented for dynamic modeling of rotor-bearing-seal-impeller systems which consist of rigid disks, distributed parameter finite rotor elements and discrete bearings, seals and impellers. A finite element model including the effects of rotatory inertia and gyroscopic moments is developed using the consistent matrix approach. The technique of dynamic matrix reduction is applied to the shaft matrices to reduce them to a set of matrices of dynamic of significantly fewer degrees of freedom. The representation of bearing, seal and impeller elements is in term of linearized stiffness and damping matrices by reasonably small perturbations from equilibrium. The stability behavior of a typical double suction centrifugal pump is presented. Results show the influence of clearance and flow conditions on running speeds and stability characteristics.

  • PDF

BWIM Using Measured Acceleration and Strain Data

  • Paik, In-Yeol;Lee, Seon-Dng;Shin, Soo-Bong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.3
    • /
    • pp.233-245
    • /
    • 2011
  • A new BWIM(bridge weigh-in-motion) algorithm using both measured strain and acceleration data is proposed. To consider the effects of bridge vibration on the estimation of moving loads, the dynamic governing equation is applied with the known stiffness and mass properties but damping is ignored. Dynamic displacements are computed indirectly from the measured strains using the beam theory and accelerations are measured directly by accelerometers. To convert a unit moving load to its equivalent nodal force, a transformation matrix is determined. The incompleteness in the measured responses is considered in developing the algorithm. To examine the proposed BWIM algorithm, simulation studies, laboratory experiments and field tests were carried. In the simulation study, effects of measurement noise and estimation error in the vehicle speed on the results were investigated.

A Study on the Axial and Torsional Coupled Vibration of Marine propeller shafts (선박 추진축의 종 비틂 연성진동에 관한 연구)

  • 김용철;정태영;전윤호
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.71-83
    • /
    • 1994
  • The axial and torsional coupled vibration of marine propeller shafts can be mainly caused by actual shape of the crank shaft and hydrodynamic forces and moments due to propellers : the former leads to stiffness matrix coupling and the latter leads to inertia and damping matrix coupling. In the present paper the characteristics of the coupled vibration of marine propeller shafts due to hydrodynamic coupling is investigated in details. First, the modelling procedure of the system and analysis technique are also developed. To verify the present method the numerical calculations were also performed. Finally, the results were compared with existing data in the literature and it was found to be in good agreement.

  • PDF

A Study on the Forced Torsional Vibration of Engines Shafting Systems with Non-linear Elastic Couplings (비선형 탄성커플링을 갖는 기관축계의 비틀림강제진동에 관한 연구)

  • 박용남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.328-336
    • /
    • 1998
  • Marine reduction gears are usually used to increase the propulsion efficiency of propellers for ships powered by medium and small sized high speed diesel engines. Most of shaft systems adopt flexible couplings to absorb the transmitted vibratory torque from the engines to the reduction gears and to prevent the chattering phenomenon of reduction gears. However some elastic couplings show non-linear characteristics due to the variable torque transmitted from the main engines and the change of ambient temperature. In this study dynamic characteristics of flexible couplings sare investigated and their effects upon various vibratory conditions of propulsion systems are clarified. A calculation program of torsional vibration for the propulsion systems are clarified. A calculation program of Results of the program developed are compared with ones of the existing linear method and propulsion systems with the elastic couplings the transfer matrix method is adopted which is found to give satisfied results.

  • PDF

Damage Location Detection by Using Variation of Flexibility and its Sensitivity to Measurement Errors (유연도 변화를 이용한 연속교의 손상부위 추정 및 민감도 해석)

  • 최형진;백영인;이학은
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.138-146
    • /
    • 1996
  • The presence of a damage, such as a crack, in a structure increases the flexibility and damping in the structure. Most of methods to detect damage or damage location uses stiffness matrix of the structural system. The modification of stiffness matrix, however, has complicated procedures to identify structural. system in the basis of finite element model and has too many degree of freedom to calculate. Identification of changes of flexibility of structure can offer damage information immediately and simple procedure can employ real time continuous monitoring system. To identify changes of the flexibility, vibration mode shapes and natural frequencies are usually used. In this paper, a procedure for damage location in continuous girder bridges using vibration data is described. The effectiveness and sensitivity of the presented method to measurement errors in mode shapes and natural frequencies are investigated using analytical results from finite element models. It is shown that the errors in the first mode shape and first natural frequency demonstrate much larger influence than those in the higher mode shapes and modal frequencies.

  • PDF

Dynamic Analysis Of Structures With Nonlinear Joints By Using Substructure Synthesis Method (부분구조 합성법을 이용한 비선형 결합부 구조물의 동적 해석)

  • 이신영;이장무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.324-330
    • /
    • 1990
  • In this study, in order to perform dynamic design of machine tools reasonably and effectively, a method was formulated to be applicable to the damped structures connected by joints having elasticity and damping by using substructure synthesis method. And a nonlinear solution method was proposed and it formulates the nonlinear parts by describing functions and uses the reducing transformation matrix by the substructure synthesis method. The results of frequency response analysis of a machine tool, where an NC lathe was partitioned by three parts of spindle, housing and bed-base part and the nonlinearity of bearing parts between spindle and housing was modelled, showed force dependency of the response.

Efficient Flutter Analysis for Aircraft with Various Analysis Conditions (다양한 해석조건을 갖는 항공기에 대한 효율적인 플러터 해석)

  • Lee, Sang-Wook;Kim, Tae-Uk;Hwang, In-Hee;Paek, Seung-Kil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.49-52
    • /
    • 2005
  • Flutter analysis procedure can be divided into two steps such as the computation of generalized mass, stiffness, and unsteady aerodynamic matrices and the calculation of major vibration modes frequency and damping values at each flight speed by solving the complex eigenvalue problem. In aircraft flutter analyses, most of the time is spent in the process of computing the unsteady aerodynamic matrices at each Mach-reduced frequency pairs defined. In this study, the method has been presented for computation and extraction of unsteady aerodynamic matrix portions dependent only on aerodynamic model using DMAP ALTER in MSC/NASTRAN SOL 145. In addition, efficient flutter analysis method has been suggested by computing and utilizing the unsteady generalized aerodynamic matrices for each analysis condition using the unsteady aerodynamic matrix portions extracted above.

  • PDF