• Title/Summary/Keyword: damping matrix

Search Result 215, Processing Time 0.024 seconds

Markov Chain Model for Synthetic Generation by Classification of Daily Precipitaion Amount into Multi-State (강수계열의 상태분류에 의한 Markov 연쇄 모의발생모형)

  • Kim, Ju-Hwan;Park, Chan-Yeong
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.155-166
    • /
    • 1996
  • A finite element model for simulating gradually and rapidly varied unsteady flow in open channel is developed based on dynamic wave equation using Petrov-Galerkin method. A matrix stability analysis shows the selective damping of short wave lengths and excellent phase accuracies achived by Petrov-Galerkin method. Whereas the Preissmann scheme displays less selective damping and poor phase accuracies, and Bubnov-Galerkin method shows nondissipative characteristics whicn causes a divergence problem in short wave length. The analysis also shows that the Petrov-Galerkin method displays the desirable combination of selective damping of high frequency progressive waves over a wide range of Courant number and good phase accuracy at low Courant number. Therefore, the Petrov-Galerkin can be effectively applied to gradually and rapidly varied unsteady flow.

  • PDF

Damping Inter-area Low Frequency Oscillations in Large Power Systems with $H_{\infty}$ Control of TCSC PARTII: Design of $H_{\infty}$ Controller (TCSC의 $H_{\infty}$ 제어에 의한 대규모 전력계통의 지역간 저주파진동 억제 Part II: $H_{\infty}$제어기 설계)

  • Kim, Yong-Gu;Jeon, Yeong-Hwan;Song, Seong-Geun;Sim, Gwan-Sik;Nam, Hae-Gon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.5
    • /
    • pp.233-241
    • /
    • 2000
  • This paper presents a systematic design procedure of $H_{\infty}$ controller of TCSC for damping low frequency inter-area oscillations in large power systems. Sensitivities of the inter-area mode for changes in line susceptance are computed using the eigen-sensitivity theory of augmented system matrix and TCSC locations are selected using the line sensitivities. The reduced model required for designing a manageable-size $H_{\infty}$ controller is obtained using the reduced frequency domain system identification method and the various weighting functions are tuned systematically to provide a robust performance. The proposed $H_{\infty}$ controller proved to be very effective for damping the inter-area mode of the large KEPCO power system.

  • PDF

Dynamic Condensation using Iterative Manner for Structural Eigenproblem with Nonproportional Damping (비비례 감쇠 구조의 고유치 문제에 대한 반복적인 동적 축소법)

  • Cho, Maeng-Hyo;Choi, Dong-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.342-349
    • /
    • 2008
  • A selection method of primary degrees of freedom in dynamic condensation for nonproportional damping structures is proposed. Recently, many dynamic condensation schemes for complex eigenanalysis have been applied to reduce the number of degrees of freedom. Among them, iterative scheme is widely used because accurate eigenproperties can be obtained by updating the transformation matrix in every iteration. However, a number of iteration to enhance the accuracy of the eigensolutions may have a possibility to make the computation cost expensive. This burden can be alleviated by applying properly selected primary degrees of freedom. In this study, which method for selection of primary degrees of freedom is best fit for the iterative dynamic condensation scheme is presented through the results of a numerical experiment. The results of eigenanalysis of the proposed method is also compared to those of other selection schemes to discuss a computational effectiveness.

  • PDF

TURBO TYPE AIR COMPRESSOR DESIGN FOR LOW VIBRATION LEVEL (저진동을 위한 터보형 공기압축기의 설계)

  • Kim, Myeong-Kuk;Jung, Yong-Soo;Park, No-gill
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.159-165
    • /
    • 1998
  • Bearing design of turbo type geared centrifugal air compressor for low vibration level has been studied. The Transfer Matrix Method was used in this paper to analyze the air-compressor consisting of impellers, multi-stage geared rotors, and oil-film hearings. We have to consider this air-compressor as multi-geared rotating system, because characteristics of rotor-bearing system are different from conventional characteristics of non-rotating system. From the view point of Rotordynamics, the stiffness and damping coefficient of oil-film bearing in case of compressor system are more sensitive than other design parameters such as shaft length, shaft diameter and the weight of impellers, etc. Therefore, the stiffness and damping coefficients on each bearing were considered as design parameters. As the result of this study, turbo type air compressor with low vibration level can be achieved.

  • PDF

Multiple-Mode Structural Vibration Control Using Negative Capacitive Shunt Damping

  • Park, Chul-Hue;Park, Hyun-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1650-1658
    • /
    • 2003
  • This paper deals with a novel shunt circuit, which is capable of suppressing multimode vibration amplitudes by using a pair of piezoceramic patches. In order to describe the characteristic behaviors of a piezoelectric damper connected with a series and a parallel resistor-negative capacitor branch circuit, the stiffness ratio and loss factor with respect to the non-dimensional frequency are considered. The mechanism of the shunt damper is also described by considering a shunt voltage constrained by shunt impedance. To obtain a guideline model of the piezo/beam system with a negative capacitive shunting, the governing equations of motion are derived through the Hamilton's principle and a piezo sensor equation as well as a shunt-damping matrix is developed. The theoretical analysis shows that the piezo/beam system combined with a series and a parallel resistor-negative capacitor branch circuit developed in this study can significantly reduce the multiple-mode vibration amplitudes over the whole structural frequency range.

Vibration Analysis of Multi-Span Timoshenko Beams Due to Moving Loads (여러 스팬을 갖는 티모센코 보 구조물의 이동하중에 의한 진동 해석)

  • Hong, Seong-Uk;Kim, Jong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2058-2066
    • /
    • 1999
  • The present paper proposes a new dynamic analysis method for multi-span Timoshenko beam structures supported by joints with damping subject to moving loads. An exact dynamic element matrix method is adopted to model Timoshenko beam structures. A generalized modal analysis method is applied to derive response formulae for beam structures subject to moving loads. The proposed method offers an exact and closed form solution. Two numerical examples are provided for validating and illustrating the proposed method. In the first numerical example, a single span beam with multiple moving loads is considered. A dynamic analysis on a multi-span beam under a moving load is considered as the second example, in which the flexibility and damping of supporting joints are taken into account. The numerical study proves that the proposed method is useful for the vibration analysis of multi-span beam-hype structures by moving loads.

A Generalized Modal Analysis for Multi-Stepped, Distributed-Parameter Rotor-Bearing Systems (다단 연속 회전체 베어링 계의 일반화된 모드 해석)

  • 박종혁;홍성욱
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.525-534
    • /
    • 1999
  • The present paper proposes a generalized modal analysis procedure for non-uniform, distributed-parameter rotor-bearing systems. An exact element matrix is derived for a Timoshenko shaft model which contains rotary inertia, shear deformation, gyroscopic effect and internal damping. Complex coordinates system is adopted for the convenience in formulation. A generalized orthogonality condition is provided to make the modal decomposition possible. The generalized modal analysis by using a modal decomposition delivers exact and closed form solutions both for frequency and time responses. Two numerical examples are presented for illustrating the proposed method. The numerical study proves that the proposed method is very efficient and useful for the analysis of distributed-parameter rotor-bearing systems.

  • PDF

Frequency analysis of beams with multiple dampers via exact generalized functions

  • Failla, Giuseppe
    • Coupled systems mechanics
    • /
    • v.5 no.2
    • /
    • pp.157-190
    • /
    • 2016
  • This paper deals with frequency analysis of Euler-Bernoulli beams carrying an arbitrary number of Kelvin-Voigt viscoelastic dampers, subjected to harmonic loads. Multiple external/internal dampers occurring at the same position along the beam axis, modeling external damping devices and internal damping due to damage or imperfect connections, are considered. The challenge is to handle simultaneous discontinuities of the response, in particular bending-moment/rotation discontinuities at the location of external/internal rotational dampers, shear-force/deflection discontinuities at the location of external/internal translational dampers. Following a generalized function approach, the paper will show that exact closed-form expressions of the frequency response under point/polynomial loads can readily be derived, for any number of dampers. Also, the exact dynamic stiffness matrix and load vector of the beam will be built in a closed analytical form, to be used in a standard assemblage procedure for exact frequency response analysis of frames.

Solution of Eigenproblems for Non-proportional Damping Systems by Lanczos Method (Lanczos 방법에 의한 비비례 감쇠 시스템의 고유치 해석)

  • 김만철;정형조;오주원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.283-290
    • /
    • 1998
  • A solution method is presented to solve the eigenproblem arising in tile dynamic analysis of non-proportional damping systems with symmetric matrices. The method is based on tile use of Lanczos method to generate a Krylov subspace of trial vectors, witch is then used to reduce a large eigenvalue problem to a much smaller one. The method retains the η order quadratic eigenproblem, without the need to the method of matrix augmentation traditionally used to cast the problem as a linear eigenproblem of order 2n. In the process, the method preserves tile sparseness and symmetry of the system matrices and does not invoke complex arithmetics, therefore, making it very economical for use in solving large problems. Numerical results are presented to demonstrate the efficiency and accuracy of the method.

  • PDF

Blind modal identification of output-only non-proportionally-damped structures by time-frequency complex independent component analysis

  • Nagarajaiah, Satish;Yang, Yongchao
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.81-97
    • /
    • 2015
  • Recently, a new output-only modal identification method based on time-frequency independent component analysis (ICA) has been developed by the authors and shown to be useful for even highly-damped structures. In many cases, it is of interest to identify the complex modes of structures with non-proportional damping. This study extends the time-frequency ICA based method to a complex ICA formulation for output-only modal identification of non-proportionally-damped structures. The connection is established between complex ICA model and the complex-valued modal expansion with sparse time-frequency representation, thereby blindly separating the measured structural responses into the complex mode matrix and complex-valued modal responses. Numerical simulation on a non-proportionally-damped system, laboratory experiment on a highly-damped three-story frame, and a real-world highly-damped base-isolated structure identification example demonstrate the capability of the time-frequency complex ICA method for identification of structures with complex modes in a straightforward and efficient manner.