• 제목/요약/키워드: damping effect of the soil

검색결과 90건 처리시간 0.025초

약액처리된 석탄회의 동적 감쇠특성 (Dynamic Damping Characteristics of Grouthed Coal Ash)

  • 천병식;정형식;고용일;이형수
    • 대한토목학회논문집
    • /
    • 제11권1호
    • /
    • pp.145-151
    • /
    • 1991
  • 화력발전소에서 부산되는 석탄회의 매립 성토재로서의 활용이나 폐기된 회사장의 재활용을 위 한 연구의 일환으로, 석탄회의 동적성질을 구명하기 위하여 석탄회를 시료토로하여 진동감쇠비를 구하였으며, 현장(회사장)에서 지반개량 전후 지중벽에 의한 감쇠 특성을 검토한 것이다. 석탄회에 시멘트 12%, 시멘트 9% 또는 약액(물유리), 시멘트 6%를 섞은 공시체 순으로 감쇠비가 크고, 동일 시료의 경우 공극비가 작을수록 감쇠비가 증가하는 것으로 보아 재질의 강성 증대에 따라 감쇠비가 커짐을 알 수 있었다. 회사장에서는 진동전파경로 대책으로 공구를 설치할 경우가 감쇠효과가 가장 크고, 지반을 개량할 경우는 개량지반의 장성이 클수록 감쇠효과가 있다. 이와같이 지반개량을 하게 되면 차수 및 강도증대효과 외에도 진동감쇠효과도 상당히 있는 것으로 판단된다.

  • PDF

지반의 감쇠효과를 고려한 지반-기초 상호작용계에 대한 지반의 영향범위 산정 (Evaluation of Influence Bounds of the Soil for Soil-Footing Interaction System considering Damping Effect of the Soil)

  • 장병순;서상근;최태환
    • 한국전산구조공학회논문집
    • /
    • 제12권3호
    • /
    • pp.281-292
    • /
    • 1999
  • 지반-기초 상호작용계를 해석할 때 실제로 지반은 다양한 지반종류와 다층으로 형성되어 있으므로 지반 특성의 변화를 고려해야 한다. 초기의 대부분의 상호작용계의 정·동적 해석은 지반의 복잡한 성질을 역학적으로 탄성거동을 한다고 가정한 Winkler 지반모델 혹은 지반을 등방성이고 균질한 반무한 탄성체로 가정한 반무한 탄성지반 모델로 보아 수행되었다. 본 연구는 유한 요소법을 이용하여 지반-기초 상호작용계의 동적 거동을 해석하기 위해 기초는 4절점 후판요소를 사용하고 지반은 지반특성을 고려할 수 있도록 8절점 6면체 요소를 사용하였고, 지반의 감쇠효과 및 지반특성을 고려한 지반-기초 상호작용계의 동적 거동을 유한요소법으로 해석하고 지반의 영향범위를 결정하는 것이다.

  • PDF

Effects of soil-structure interaction and variability of soil properties on seismic performance of reinforced concrete structures

  • Mekki, Mohammed;Hemsas, Miloud;Zoutat, Meriem;Elachachi, Sidi M.
    • Earthquakes and Structures
    • /
    • 제22권3호
    • /
    • pp.219-230
    • /
    • 2022
  • Knowing that the variability of soil properties is an important source of uncertainty in geotechnical analyses, we will study in this paper the effect of this variability on the seismic response of a structure within the framework of Soil Structure Interaction (SSI). We use the proposed and developed model (N2-ISS, Mekki et al., 2014). This approach is based on an extension of the N2 method by determining the capacity curve of the fixed base system oscillating mainly in the first mode, then modified to obtain the capacity curve of the system on a flexible basis using the concept of the equivalent nonlinear oscillator. The properties of the soil that we are interested in this paper will be the shear wave velocity and the soil damping. These parameters will be modeled at first, as independent random fields, then, the two parameters will be correlated. The results obtained showed the importance of the use of random field in the study of SSI systems. The variability of soil damping and shear wave velocity introduces significant uncertainty not only in the evaluation of the damping of the soil-structure system but also in the estimation of the displacement of the structure and the base-shear force.

A comparative study on damping of finite dry and saturated sand stratum under vertical vibrations

  • Prathap Kumar, M.T.;Ramesh, H.N.;Raghavebdra Rao, M.V.;Asha, M.
    • Geomechanics and Engineering
    • /
    • 제2권1호
    • /
    • pp.29-44
    • /
    • 2010
  • Vertical vibration tests were conducted using model footings of different size and mass resting on the surface of finite sand layer with different height to width ratios which was underlain by either rigid concrete base, under both dry and saturated condition. The effect of saturation on the damping ratio of finite sand stratum underlain by a rigid base has been verified and compared with the results obtained for the case of finite dry sand stratum underlain by the rigid base. Comparison of results of the experimental study showed that the damping in both the cases is less than 10%. The damping ratio obtained for finite saturated sand stratum is marginally lower than that obtained on finite dry sand stratum at H/B ratio of 0.5. The difference between the two cases becomes significant when the H/B ratio increases to 3.0, indicating the significant influence of soil moisture on damping ratio of foundation- soil system with increase in the thickness of the finite sand stratum. Comparison of the predicted damping ratio for a homogeneous sand stratum with the experimental damping ratio obtained corresponding to the height to width ratio of 3.0 of the finite sand stratum underlain by the rigid concrete base indicates a significant reduction in damping ratio of the foundation-soil system for both the cases.

Comparative analysis of damping ratio determination methods based on dynamic triaxial tests

  • Song Dongsong;Liu Hongshuai
    • Earthquakes and Structures
    • /
    • 제25권4호
    • /
    • pp.249-267
    • /
    • 2023
  • Various methods for determining the damping ratio have been proposed by scholars both domestically and abroad. However, no comparative analysis of different determination methods has been seen yet. In this study, typical sand (Fujian standard sand) and cohesive soils were selected as experimental objects, and undrained strain-controlled dynamic triaxial tests were conducted. The differences between existing damping ratio determination methods were theoretically compared and analyzed. The results showed that the hysteresis curve of cohesive soils had better symmetry and more closely conformed to the definition of equivalent linear viscoelasticity. For non-cohesive soils, the differences in damping ratio determined by six methods were significant. The differences decreased with increasing confining pressure and relative density, but increased gradually with increasing shear strain, especially at high shear strains, where the maximum relative error reached 200%. For cohesive soils, the differences in damping ratio determined by six methods were relatively small, with a maximum relative error of about 50%. Moreover, they were less affected by effective confining pressure and had the same changing trend under different effective confining pressures. The damping ratio determination method has a large effect on the seismic response of soils distributed by non-cohesive soils, with a maximum relative error of about 15% for the PGA and up to about 30% for the Sa. However, for soil layers distributed by cohesive soils, the damping ratio determination method has less influence on the seismic response. Therefore, it is necessary to adopt a unified damping ratio determination method for non-cohesive soils, which can effectively avoid artificial errors caused by different determination methods.

An efficient method for biological control of . soil-borne plant pathogens using chitinolytic microrgainsms

  • Lee, Tae-Gun;Park, Seur-Kee
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.110.3-111
    • /
    • 2003
  • The effect of biological control on the severity of hot pepper wilt disease was evaluated in the vinyl house with plants cultivated in the nursery soil containing chitin and chitinolytic microorganisms. The chitinolytic microorganisms, Trichoderma harzianum and Chromobacterium sp. strain C-61, were well survived in the nursery soil containing chitin. The hot pepper damping-off was markedly suppressed in the nursery soil containing chitin and chitinolytic microorganisms. The survival of chitinolytic microorganisms and suppression of damping-off were superior as the amounts of chitin added to the nursery soil increased, but growth of hot pepper was inhibited in the 10% (w/w) chitin treatment. When the plants cultivated in the nursery soil containing 1% chitin and chitinolytic microorganisms were transplanted in the vinyl house, the vegetative growth increased and the wilt disease was reduced as comparison with those of control.

  • PDF

An efficient method for biological control of soil-borne plant pathogens using chitinolytic microrganisms

  • Lee, Tae-Gun;Park, Seur-Kee
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.110.2-110
    • /
    • 2003
  • The effect of biological control on the severity of hot pepper wilt disease was evaluated in the vinyl house with plants cultivated in the nursery soil containing chitin and chitinolytic microorganisms. The chitinolytic microorganisms, Trichoderma harzianum and Chromobacterium sp. strain C-61, were well survived in the nursery soil containing chitin. The hot pepper damping-off was markedly suppressed in the nursery soil containing chitin and chitinolytic microorganisms. The survival of chitinolytic microorganisms and suppression of damping-off were superior as the amounts of chitin added to the nursery soil increased, but growth of hot pepper was inhibited in the 10% (w/w) chitin treatment. When the plants cultivated in the nursery soil containing 1% chitin and chitinolytic microorganisms were transplanted in the vinyl house, the vegetative growth increased and the wilt disease was reduced as comparison with those of control.

  • PDF

Seismic equivalent linear response of a structure by considering soil-structure interaction: Analytical and numerical analysis

  • Maroua Lagaguine;Badreddine Sbartai
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.173-189
    • /
    • 2023
  • For a given structural geometry, the stiffness and damping parameters of the soil and the dynamic response of the structure may change in the face of an equivalent linear soil behavior caused by a strong earthquake. Therefore, the influence of equivalent linear soil behavior on the impedance functions form and the seismic response of the soil-structure system has been investigated. Through the substructure method, the seismic response of the selected structure was obtained by an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. Also, the dynamic response of the soil-structure system for a nonlinear soil behavior and for the two types of impedance function forms was also analyzed by 2D finite element modeling using ABAQUS software. The numerical results were compared with those of the analytical solution. After the investigation, the effect of soil nonlinearity clearly showed the critical role of soil stiffness loss under strong shaking, which is more complex than the linear elastic soil behavior, where the energy dissipation depends on the seismic motion amplitude and its frequency, the impedance function types, the shear modulus reduction and the damping increase. Excellent agreement between finite element analysis and analytical results has been obtained due to the reasonable representation of the model.

Dynamic stress, strain and deflection analysis of pipes conveying nanofluid buried in the soil medium considering damping effects subjected to earthquake load

  • Abadi, M. Heydari Nosrat;Darvishi, H. Hassanpour;Nouri, A.R. Zamani
    • Computers and Concrete
    • /
    • 제24권5호
    • /
    • pp.445-452
    • /
    • 2019
  • In this paper, dynamic stress, strain and deflection analysis of concrete pipes conveying nanoparticles-water under the seismic load are studied. The pipe is buried in the soil which is modeled by spring and damper elements. The Navier-Stokes equation is used for obtaining the force induced by the fluid and the mixture rule is utilized for considering the effect of nanoparticles. Based on refined two variables shear deformation theory of shells, the pipe is simulated and the equations of motion are derived based on energy method. The Galerkin and Newmark methods are utilized for calculating the dynamic stress, strain and deflection of the concrete pipe. The influences of internal fluid, nanoparticles volume percent, soil medium and damping of it as well as length to diameter ratio of the pipe are shown on the dynamic stress, strain and displacement of the pipe. The results show that with enhancing the nanoparticles volume percent, the dynamic stress, strain and deflection decrease.

인삼 모잘록병 (Rhizoctonia soEani)에 대한 Tolclofos-methyl의 효과 (Effect of Tolclofos-methyl on damping-off of ginseng seedlings incited by Rhisoctonia solani)

  • 유연현;조대희;오승환
    • Journal of Ginseng Research
    • /
    • 제13권1호
    • /
    • pp.114-118
    • /
    • 1989
  • Tolclofos-methyl applied as seed dipping at 1,000 ppm for 3 hrs before sowing and soil drenching at the rate of 300 g ai./10 a in the middle of April protected emerging seedlings of Panax ginseng from damping-off caused by Rhiiutonia solani(AG2-1) in Yangjik Soil artificially infested with the pathogen. Germination rates with tolclofos-methyl, pencycuron, and control were 53.7%, 45.8%, and 7.5%, respectively, while the rate of the seeds at non-infested soil was 62.6%. The effectiveness of Tolclofos-methyl against the pathogen in the soil lasted upto 32 days in vitro. However, the transpiratio of ginseng seedlings increased greatly with chemical treatment, showing 0.02, 0.12, and 0.24 m1/cm2 leaf area/day at 0, 1,2, and 4 ppm a.i. of the fungicide, respectively.

  • PDF