• Title/Summary/Keyword: damping coefficient

Search Result 579, Processing Time 0.028 seconds

Rotordynamic Analysis of Labyrinth Seal with Swirl Brake (스월 브레이크가 장착된 래버린스 씰의 동특성 해석)

  • Lee, Jeongin;Suh, Junho
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.63-69
    • /
    • 2022
  • In this research, the rotordynamic characteristics of the labyrinth seal with and without swirl brake were predicted using the computational fluid dynamic (CFD) model. Based on previous studies, a simple swirl brake consisting of square vanes without stagger angle is designed and placed in front of the seal inlet. The rotating frame of reference is utilized to consider the whirling motion of the rotor in the steady-state analysis since the whirling motion is transient behavior in nature. CFD analysis was performed in the range of -1 to 1 pre-swirl ratio for a given seal and swirl brake design and operating conditions. The CFD analysis result shows that the swirl brake effectively reduces the pre-swirl since the circumferential fluid velocity of labyrinth seal with swirl brake was lower than that without swirl brake. The cross-coupled stiffness coefficient, which is greatly affected by the circumferential fluid velocity, increased with an increasing pre-swirl ratio in a seal without a swirl brake but showed a low value in a seal with a swirl brake. The change in the damping coefficient was relatively small. The effective damping coefficient of the labyrinth seal with swirl brake was generally constant and showed a higher value than the labyrinth seal without swirl brake.

The Effect of Oil Supply Pressure on the Performance of Vapor Cavitated Short Squeeze Film Dampers (증기 공동현상이 발생하는 무한 소폭 스퀴즈 필름 댐퍼 성능과 오일 공급압력의 영향)

  • Jung, Si-Young
    • Tribology and Lubricants
    • /
    • v.24 no.3
    • /
    • pp.147-153
    • /
    • 2008
  • The effect of oil supply pressure on the performance of vapor cavitated short squeeze film dampers is examined. Vapor cavitation is characterized by film rupture occurring as a result of evaporating oils. The pressure of vapor cavity in the film is almost zero in absolute pressure and nearly constant. Pan's model about the shape of vapor cavity is utilized for studying the effect of vapor cavitation on the damping capability of a short squeeze film damper. As the level of oil supply pressure is increasing, vapor cavitation is suppressed so that the direct damping coefficient increases and the cross coupled damping coefficient decreases. Futhermore, the analysis of the unbalance responses of a rigid rotor supported on cavitated squeeze film dampers shows that a significant reduction in rotor amplitude and force transmissibility is possible by controlling the oil supply pressure into short squeeze film dampers.

A Study on the Effects of the Period Control Device of Anti-Rolling Tanks (감요수조의 주기조절 장치 효과에 관한 연구)

  • 유재문;김효철;이현엽
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The effect of the passive anti-rolling tanks(ART) decreases when the roll period of the vessel does not match the designed oscillating period of the fluid in the tank. In order to improve the effect of the passive ART, the damping plates are installed in the lower duct of the ART to adjust the oscillating period of the fluid. The effects of the damping plates on the oscillating period of the fluid and the changes of the stabilizing moments are examined through the series of bench tests. Acryl model tank larger than 1m breadth is made to minimize the viscous effect of the tank and the stabilizing moments of the tank are measured for various roll angles. Using the obtained tank damping coefficient, RAO(Response Amplitude Operator) value in the resonance range is computed and the stabilizing effect of a ART has been estimated.

Initial Design of A Suspension Damper for Truck Driver's Seat (트럭 운전석 현가 댐퍼의 초기설계)

  • Baek, W.K.;Oh, S.W.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.91-96
    • /
    • 1999
  • This study is about the design and analysis ot a suspension damper for truck driver's seat to improve the ride comfort. Trucks are usually subjected to hostile driving environments. Therefore, many truck driver's seat have suspension seats to isolate the vibration from the cab floor panel. Because the vehicle suspension system can reduce the primary vibration from the ground, only low frequency vibration can be transmitted to the driver's seat. But, this low frequency vibration can be harmful to the driver. The seat damper is very critical element to improve the ride comfort for the driver. In this study, a four-stage damper is designed and analyzed for the vibration capability. The damping coefficient of this damper can lie manually controlled in response to the road and driving environment.

  • PDF

Nonlinear Vibration Analysis of Thin Perforated Plate with Wire Impact Damping (와이어 충돌감쇠를 갖는 다공성 박판의 비선형 진동 해석)

  • 김성대;김원진;이부윤;이종원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.639-647
    • /
    • 2002
  • The nonlinear vibration of the thin perforated plate is analyzed in consideration of the V-shaped tension distribution and the effect of wire impact damping. The reduced order FEM model of the tension plate is obtained from dynamic condensation for the mass and stiffness matrices. Tension wire is modeled using the lumped parameter method to effectively describe its contact interactions with the plate. The nonlinear contact-impact model is composed of spring and damper elements, of which parameters are determined from the Hertzian contact theory and the restitution coefficient, respectively. From the evaluation of the computational accuracy and computation time for the deduced impact stiffness and damping coefficient, we determined proper values for the simulation works, accounting for the computational accuracy as well as the computational efficiency. Finally we discussed the results of nonlinear nitration analysis for variations of their design parameters.

Wave Damping Rate Over Multi-layer Permeable Bed of Finite Depth (깊이가 유한한 다중 투수층 위에서의 파의 감쇠율)

  • Suh, Kyung-Duck;Do, Ki-Deok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.127-135
    • /
    • 2009
  • Reid and Kajiura(1957) has studied on the wave damping rate over a permeable bed of infinite depth. In this study, wave damping rate over a permeable bed of finite depth is derived by linear wave theory. It is then extended to derive wave damping rates over a double or triple layer, each of which consist of different material. Applying the wave damping rate to the mild slope equation, the wave transmission coefficient over a permeable bed has been calculated. The model has been certificated by comparing with the result of Flaten and Rygg(1991)'s integral equation method in the case of a single-layer bed.

The Effect of Impact Absorbing System with 2 DOF Deformation According to the Variation of Cylinder Wall on Damping Coefficient (실린더 벽면 변화가 2자유도계 충격흡수장치의 감쇠계수에 미치는 영향)

  • Han, Geun-Jo;Ahn, Chan-Woo;Ahn, Sung-Chan;Shim, Jae-Joon;Kim, Sung-Youn
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.101-105
    • /
    • 2002
  • Many malfunction take place in container crane spreader due to impact. So we designed a 2 DOF hydraulic impact absorbing equipment to absorb the impact and we studied the change of damping coefficient with respect to the variation of dimensions of oil-Cylinder wail. When we design the dimension of hydraulic cylinder wall considering the displacement on the wall, the value of it over 20m didn't affect the damping coefficient.

Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory

  • Khazaei, Pegah;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.31-52
    • /
    • 2020
  • This paper investigates the size dependent effect on the vibration analysis of a porous nanocomposite viscoelastic plate reinforced by functionally graded-single walled carbon nanotubes (FG-SWCNTs) by considering nonlocal strain gradient theory. Therefore, using energy method and Hamilton's principle, the equations of motion are derived. In this article, the effects of nonlocal parameter, aspect ratio, strain gradient parameter, volume fraction of carbon nanotubes (CNTs), damping coefficient, porosity coefficient, and temperature change on the natural frequency are perused. The innovation of this paper is to compare the effectiveness of each mentioned parameters individually on the free vibrations of this plate and to represent the appropriate value for each parameter to achieve an ideal nanocomposite plate that minimizes vibration. The results are verified with those referenced in the paper. The results illustrate that the effect of damping coefficient on the increase of natural frequency is significantly higher than the other parameters effect, and the effects of the strain gradient parameter and nonlocal parameter on the natural frequency increase are less than damping coefficient effect, respectively. Furthermore, the results indicate that the natural frequency decreases with a rise in the nonlocal parameter, aspect ratio and temperature change. Also, the natural frequency increases with a rise in the strain gradient parameter and CNTs volume fraction. This study can be used for optimizing the industrial and medical designs, such as automotive industry, aerospace engineering and water purification system, by considering ideal properties for the nanocomposite plate.

A study on Modeling and Experiments of an Eddy Current Damping (와전류감쇠의 모델링 및 특성 실험에 관한 연구)

  • Park, Jung-Sam;Kwag, Dong-Gi;Bae, Jae-Sung;Hwang, Jai-Hyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.250-254
    • /
    • 2008
  • Eddy currents are induced when a nonmagnetic conductive material is moving subjected to the magnetic field due to a permanent magnet. These currents circulates in the conductive material and are dissipated, causing a repulsive force between the magnet and the conductor. Using this concept, the eddy current damping can be used as a viscous damping. The present study investigates the characteristics of a magnetic damping analytically and experimentally. The theoretical model of a eddy current damping is developed from electromagnetics and is verified from experiments. The drop test of a magnet in the cooper tube shows that the present model can accurately predict the damping force. Additionally, the dynamic test of a eddy current damping is carried to verify the present model.

  • PDF

A Study of Aerodynamic Modelling for Fin Unfolding Motion Analysis (공력면 전개 모사를 위한 공력 모델링 연구)

  • Jung, Suk-Young;Yoon, Sung-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.420-427
    • /
    • 2008
  • For simulation of a fin unfolding motion for the various aerodynamic conditions, equations and moments applying to the unfolding fin were modelled. Aerodynamic roll moment consists of the static roll moment and the damping moment, which were obtained through wind tunnel tests and numerical analyses respectively. Panel method was used to compute the roll damping coefficient with deflected fin, whose angle was equivalent to angle of attack due to the deployment motion. Roll damping coefficient is a function of angle of attack, sideslip angle, and deployment angle but not of angular velocity of deployment. Simulation with aerodynamic damping model gave more similar deployment time compared to fin deployment test results.