• Title/Summary/Keyword: damper effect

Search Result 398, Processing Time 0.022 seconds

Experiment and Analysis for the Horizontal Vibration Control of Access Floor on Reinforced Concrete Structures (철근 콘크리트 구조물의 Access Floor 수평진동 제어를 위한 실험 및 해석)

  • 변근주;김문겸;송하원;이호범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.31-39
    • /
    • 1997
  • This paper is on the vibration control of access floor on the frames of reinforced structure. In this study, the horizontal anti-vibration system using precise spring damper was developed and modeling and vibration analysis of the RC structure was performed for the control of horizontal vibration coused by machinery and worker's moving. Experiment was done in three cases, no damper at the RC structures, dampers connecting pedestal to pedestal and pedestal to the structure, for the investigation of the effect of the system on disigned RC structure. For each experiment, the occeleration responses on slab and access floor after giving impact wave and external vibration were measured. It was shown that the magnitude of resonance response of the system with dampers are smaller than without damper and the resonance peak also partly moved to low-frequency range. Furthermore. It was shown that the acceleration components of the system with domoers decreased greatly in high-frequency range and the system was very much effective especially for external vibration. In order to verify the anti-vibration effect of the developed system, the vibration analysis was also done for the system by using the finite element modelling. The analysis results was in good agreement with experimental results. Thus, It is concluded that this study is useful for the design of precise anti-vibration system and micro-vibration control of concrete structures.

  • PDF

Temperature effect on seismic behavior of transmission tower-line system equipped with SMA-TMD

  • Tian, Li;Liu, Juncai;Qiu, Canxing;Rong, Kunjie
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2019
  • Transmission tower-line system is one of most critical lifeline systems to cities. However, it is found that the transmission tower-line system is prone to be damaged by earthquakes in past decades. To mitigate seismic demands, this study introduces a tuned-mass damper (TMD) using superelastic shape memory alloy (SMA) spring for the system. In addition, considering the dynamic characteristics of both tower-line system and SMA are affected by temperature change. Particular attention is paid on the effect of temperature variation on seismic behavior. In doing so, the SMA-TMD is installed into the system, and its properties are optimized through parametric analyses. The considered temperature range is from -40 to $40^{\circ}C$. The seismic control effect of using SMA-TMD is investigated under the considered temperatures. Interested seismic performance indices include peak displacement and peak acceleration at the tower top and the height-wise deformation. Parametric analyses on seismic intensity and frequency ratio were carried out as well. This study indicates that the nonlinear behavior of SMA-TMD is critical to the control effect, and proper tuning before application is advisable. Seismic demand mitigation is always achieved in this wide temperature range, and the control effect is increased at high temperatures.

Application of Impact Dampers to Improve Cutting Performance of Machine Tools in Turning Process (선삭공정에서 공작기계의 절삭성능 개선을 위한 임펙트댐퍼의 응용)

  • 정성종;김옥현;박정근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.4
    • /
    • pp.463-470
    • /
    • 1986
  • 본 연구에서는 절삭공정 중 발생하는 공구의 접촉이탈 현상에 의하여 공작 물의 절삭된 표면중에 한회전 및 그 이전 회전에 절삭된 절삭면의 형상이 현재의 절삭 깊이에 영향을 미치는 다중재생효과(multiple regenerative effect)가 존재하는 선삭 작업에서 공구의 착탈현상을 고려한 비선형채터(nonlinear chatter)를 공작기계의 생 산성의 관점에서 절삭공정의 특성을 고려하여 해석하였으며, 수동제어기의 일종인 임 펙트댐퍼를 절삭공정에 응용하여 절삭작업중에 공작기계의 안정성향상 뿐만 아니라 생 산성의 증가효과를 규명하였다.아울러 댐퍼자체의 설계변수에 따른 채터 억제효과 를 고려하여 최적의 댐퍼를 설계하는 방법을 제시하였다.

Evaluation and analytical approximation of Tuned Mass Damper performance in an earthquake environment

  • Tributsch, Alexander;Adam, Christoph
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.155-179
    • /
    • 2012
  • This paper aims at assessing the seismic performance of Tuned Mass Dampers (TMDs) based on sets of recorded ground motions. For the simplest configuration of a structure-TMD assembly, in a comprehensive study characteristic response quantities are derived and statistically evaluated. Optimal tuning of TMD parameters is discussed and evaluated. The response reduction by application of a TMD is quantified depending on the structural period, inherent damping of the stand-alone structure, and ratio of TMD mass to structural mass. The effect of detuning on the stroke of the TMD and on the structural response is assessed and quantified. It is verified that a TMD damping coefficient larger than the optimal one reduces the peak deflection of the TMD spring significantly, whereas the response reduction of the main structure remains almost unaffected. Analytical relations for quantifying the effect of a TMD are derived and subsequently evaluated. These relations allow the engineer in practice a fast and yet accurate assessment of the TMD performance.

Effect of Swirl Injector with Variable Backhole on Acoustic Damping in Liquid Rocket Engine (액체로켓 스월인젝터의 음향학적 감쇠기능)

  • ;;;;;;Bazarov, V. G.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.79-86
    • /
    • 2006
  • Swirl injector with adjustable backhole length was analyzed to suppress high-frequency combustion instability in Liquid Rocket Engines. In order to analyze the effect of variable backhole injector as an acoustic absorber, backhole injector was regarded as a quarter-wave resonator. As a result of theoretical approaches and acoustic tests, backhole injector with adjustable length could decrease the unstable modes of combustion chamber. And the damping efficiency was estimated by measuring damping rates experimentally.

A Study on the Vibration Control of the Slab Using the Viscoelastic Material (점탄성 소재를 이용한 바닥판의 진동저감에 관한 연구)

  • Kim, Soo-Jin;Hwang, Jae-Seung;Kim, Hong-Jin;Kim, Do-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.526-529
    • /
    • 2005
  • Attempts have been applied to reduce the vibration of slab. There are several method in the vibration control of slab from a traditional method such as increment of mass or stiffness of slab to a innovative method augmenting damping of slab. In this study, a attempt has been made to increase the effective damping in slab using the viscoelastic dampers made of viscoelastic material. The dampers are installed in a gab between slab and a beam. It is assumed that the stiffness of the beam is infinity for simplicity of the evaluation. we evaluate the reduction effect of the slab selected through numerical simulation and optimization process by applying it to a FEM model. The numerical simulation shows that the effective damping is increased as the number of bean is increased and the vibration control effect is very high.

  • PDF

Investigation of the effect of damper location and slip load calculation on the behavior of a RC structure

  • Mehmet Sevik;Taha Yasin Altiok;Ali Demir
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.365-375
    • /
    • 2023
  • Energy dissipation systems increase the energy dissipation capacity of buildings considerably. In this study, the effect of dampers on a typical 10-storey reinforced concrete structure with a ductile moment-resisting frame was investigated. In this context, 5 different models were created according to the calculation of the slip load and the positions of the dampers in the structure. Nonlinear time-history analyzes using 11 different earthquake acceleration records were performed on the models using the ETABS program. As a result of the analyses, storey displacements, energy dissipation ratios, drift ratios, storey accelerations, storey shears, and hysteretic curves of the dampers on the first and last storey and overturning moments are presented. In the study, it was determined that friction dampers increased the energy dissipation capacities of all models. In addition, it has been determined that positioning the dampers in the outer region of the structures and taking the base shear as a basis in the slip load calculation will be more effective.

Effect of Multi-Swirl Injector on Acoustic Damping in Model Combustion Chamber (모형 연소실에 장착된 다중 스월인젝터의 음향학적 감쇠 효과)

  • Kim, Hyun-Sung;Kim, Byung-Sun;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.198-203
    • /
    • 2007
  • The aim of this study is to suppress the high-frequency combustion instability by acoustic absorption through swirl injector with variable air core length. In the previous study, acoustic damping effects on air core (length, shape, volume) and location of the injector in a model chamber were investigated. Through previous results, our study has advanced to the effect of tuned multi-injectors. From the experimental data, it is proved that increasing of numbers of injectors mounted each anti-node point can increase acoustic damping effect. Also, when tuned injectors at 1L, 1T, 1L1T modes simultaneously are installed each anti-node point of model chamber, damping effect of tuned injectors with multi modes is well agreed with it of tuned injectors with single mode.

  • PDF

Simulation of the damping effect of a high-rise CRST frame structure

  • Lu, Xilin;Zhang, Hongmei;Meng, Chunguang
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.245-255
    • /
    • 2012
  • The damping effect of a Concrete-filled Rectangular Steel Tube (CRST) frame structure is studied in this paper. Viscous dampers are employed to insure the function of the building especially subjected to earthquakes, for some of the main vertical elements of the building are not continuous. The shaking table test of a 1:15 scale model was conducted under different earthquake excitations to recognize the seismic behavior of this building. And the vibration damping effect was also investigated by the shaking table test and the simulation analysis. The nonlinear time-history analysis of the shaking table test model was carried out by the finite element analysis program CANNY. The simulation model was constructed in accordance with the tested one and was analyzed under the same loading condition and the simulation effect was then validated by the tested results. Further more, the simulation analysis of the prototype structure was carried out by the same procedure. Both the simulated and tested results indicate that there are no obvious weak stories on the damping equipped structure, and the dampers can provide the probability of an irregular CRST frame structure to meet the requirements of the design code on energy dissipation and deformation limitation.

Vestibule Smoke Control Considering the Stack Effect and the Opening of the Outside Door (굴뚝효과와 외부출입문 개방을 고려한 부속실 제연)

  • Yongkwang Kim;Zudal Son;Seoyoung Kim;Hasung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.15-24
    • /
    • 2024
  • The purpose of this study is to improve the stack effect of the staircase and the failure to take into account the opening of the outside door of the staircase, which are the disadvantages of the existing smoke control only vestibule. As a result of the study, the new vestibule and the staircase simultaneous smoke control are equipped with an exhaust flap damper with an effective opening area of about 0.25 m2 in the upper part of the staircase, and a ventilator-type air supply fan of about 5 m3/s in the lower part, and take measures to prevent overpressure in the staircase. If you use the new simultaneous smoke control method of the vestibule and staircase, you can achieve the following effects. First, it is possible to open the external entrance door. Second, it can reduce the stack effect. Third, the staircase door closes automatically without fail. And a new method of preventing overpressure was proposed for the vestibule.