• Title/Summary/Keyword: damper effect

Search Result 397, Processing Time 0.029 seconds

Seismic vibration control of an innovative self-centering damper using confined SMA core

  • Qiu, Canxing;Gong, Zhaohui;Peng, Changle;Li, Han
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.241-254
    • /
    • 2020
  • Using confined shape memory alloy (SMA) bar or plate, this study proposes an innovative self-centering damper. The damper is essentially properly machined SMA core, i.e., bar or plate, that encased in buckling-restrained device. To prove the design concept, cyclic loading tests were carried out. According to the test results, the damper exhibited desired flag-shape hysteretic behaviors upon both tension and compression actions, although asymmetric behavior is noted. Based on the experimental data, the hysteretic parameters that interested by seismic applications, such as the strength, stiffness, equivalent damping ratio and recentering capacity, are quantified. Processed in the Matlab/Simulink environment, a preliminary evaluation of the seismic control effect for this damper was conducted. The proposed damper was placed at the first story of a multi-story frame and then the original and controlled structures were subjected to earthquake excitations. The numerical outcome indicated the damper is effective in controlling seismic deformation demands. Besides, a companion SMA damper which represents a popular type in previous studies is also introduced in the analysis to further reveal the seismic control characteristics of the newly proposed damper. In current case, it was found that although the current SMA damper shows asymmetric tension-compression behavior, it successfully contributes comparable seismic control effect as those having symmetrical cyclic behavior. Additionally, the proposed damper even shows better global performance in controlling acceleration demands. Thus, this paper reduces the concern of using SMA dampers with asymmetric cyclic behavior to a certain degree.

Evaluation of Vibration Control Performance of Outrigger Damper System for Tall Buildings Subjected to Seismic Load (아웃리거 댐퍼시스템의 고층건물 지진응답제어 성능 평가)

  • Yoon, Sung-Wook;Lee, Lyeong-Kyeong;Kim, Kwang-Il;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.95-104
    • /
    • 2016
  • Recently, the concept of damped outrigger system has been proposed for tall buildings. But, structural characteristics and design method of this system were not sufficiently investigated to date. In this study, the dynamic response control performance of outrigger damper has been analyzed. To this end, a simplified analysis model with outrigger damper system has been developed. Use the El Centro seismic(1940, NS) analysis was performed. Analysis results, on the top floor displacement response to the earthquake response, did not have a big effect. However, acceleration response control effect was found to be excellent. The increase of outrigger damper capacity usually results in the improved control performance. However, it is necessary to select that proper stiffness and damping values of the outrigger damper system because, the outrigger damper having large capacity is result in heavy financial burden.

Seismic Performance Assessment of a Nonlinear Structure Controlled by Magneto-Rheological Damper Using Multi-Platform Analysis (자기유변댐퍼로 제어되는 비선형 구조물의 멀티플랫폼 해석을 이용한 내진성능평가)

  • Kim, Sung Jig
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.143-150
    • /
    • 2013
  • The paper introduces Multi-Platform Analysis (MPA) for the seismic performance of a structure controlled by Magneto-Rheological (MR) dampers and presents analytical assessment of the effect of MR damper when taking into account nonlinear behavior of the structure. This paper introduces the MR Damper Plugin that can facilitate communication between MATLAB/Simulink and a finite element analysis tool in order to account for more complex inelastic behavior of the structure with MR dampers. The MPA method using the developed MR Damper Plugin is validated with experimental results from the real-time hybrid simulation. By utilizing the proposed MPA method, the three-story RC structure controlled by MR dampers is more realistically modeled and its performance under seismic loads is investigated. It is concluded that MR damper designed for a linear structure is not effective in a nonlinear structure and can overestimate the effect of MR damper. This work is expected to overcome difficulties in the analytical assessment of structural control strategies for complex and nonlinear structures by obtaining more reliable results.

Shaking Table Test of a Full Scale 3 Story Steel Frame with Friction Dampers (마찰형 감쇠장치가 설치된 실물크기 3층 철골프레임의 진동대 실험)

  • Bae, Chun-Hee;Kim, Yeon-Whan;Lee, Sang-Hyun;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.862-873
    • /
    • 2007
  • Energy dissipation devices can be considered as an alternative for the seismic performance enhancement of existing structures based on the strengthened seismic design code. In this study, seismic response mitigation effects of friction dampers are investigated through the shaking table test of a full scale 3 story building structure. Frist, the bilinear force-displacement relationship of a structure-brace-friction damper system and the effect of brace-friction damper on the increase of frequency and damping ratio are identified. Second, frequency, displacement, and torque dependent characteristics of the friction damper are investigated by using harmonic load excitation tests. Finally, the shaking table tests are performed for a full scale 3 story steel frame. System identification results using random signal excitation indicated that brace-friction damper increased structural damping ratio and frequency, and El Centro earthquake test showed that brace-friction damper reduced the peak displacement and acceleration significantly. In particular, it was observed that the damping effect due to friction damper becomed obvious when the structure was excited by more intensive load causing frequent slippage of the friction dampers.

A Experiment of the damping effect for Electromagnetic Damper using DC Motor and Ballscrew (DC Motor와 Ballscrew를 이용한 Electromagnetic Damper Damping 효과 실험)

  • Kang, Jeong-Ho;Lee, Hac-Choel;Jeong, Young-Suk
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.124-126
    • /
    • 2008
  • In this Paper, the modeling of the electromagnetic damper for automobile suspension is presented and the validation of the model is demonstrated by experiments. An electromagnetic damper, composed of a rotary DC motor, and a ball screw and nut. The damper then operates as a linear electric actuator. The damper then operate as a linear electric actuator. The results indicate the proposed system is feasible and it is proved that the electromagnetic damper has better than oil damper of passive control system.

  • PDF

Experimental research of dynamic behaviors at viscoelastic damper with change of orifice (점탄성 감쇠기의 간극 변화에 따른 동특성에 대한 실험적 연구)

  • Yun, Jong-Min;Lim, Sang-Hyuk;Park, Hwa-Yong;Kim, Chang-Yeol;Lee, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.744-749
    • /
    • 2011
  • Silicon oil in viscous fluid damper has a viscoelastic feature that show stiffness besides damping. These properties depend on frequency and are non-linear. A lot of research has been conducted in order to identify viscoelastic damper with mathematical model. Fractional Derivative Maxwell Model has been widely used, but this model did not explain the effect of damper size change on the damper performance. In this paper, the experimental study was conducted to validate damper's dynamic behaviors when total damper's size is changed while maintaining same aspect ratio and orifice size.

  • PDF

Research for the Pulsating Pressure Characteristics by a Damper and an Accumulator in the High Frequency Hydraulic System (고주파 유압시스템에서 감치장치와 축압기에 의한 맥동 충격파 감쇄특성에 대한 연구)

  • Kim, Yang-Soo;Kim, Jae-Soo;Rho, Hyung-Woon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.641-647
    • /
    • 2004
  • Characteristics of the high frequency pulsatile flow have been investigated experimentally to understand the flow phenomena in the hydraulic system. The accumulator in high frequency hydraulic system but that is not effective all frequency zone. Therefore, a hydraulic damper used with accumulator is suggested to reduce the high frequency pulsatile where the accumulator is not effective. The pulsating pressure obtained by Pressure measurement system are analyzed to power spectral density distribution. According to the variations of pump input pressure and actuator acceleration frequency, the pressure is measured with or without an accumulator or pulsatile damper The amplitude of pressure with damper is very lower than those without accumulator or damper due to absorbing function of damper. As the frequency of actuator acceleration is increased, the effect of damper becomes very important to decrease the amplitude of pulsatile Pressure waveform with high frequencies.

  • PDF

Vibration Suppression Using Eddy Current Damper (와전류 감쇠기를 이용한 진동 억제)

  • Kwak, Moon-K;Lee, Myeong-Il;Heo, Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.136-141
    • /
    • 2003
  • This paper is concerned with the eddy current damper which can be used to enhance the damping of the host structure. The operating principle of the eddy current damper is first explained in detail. The dynamic interaction between the magnets and the copper plate produces eddy current thus resulting in the damping force. By attaching the eddy current damper to the host structure, the damping of the total structure can be increased so that vibrations can be suppressed. The advantage of the eddy current damper is that it doesn't require any electronic devices and power supply. The effect of the eddy current damper on the global dynamic characteristics of the structure is investigated by considering the cantilever with the eddy current damper. Experimental results show that the eddy current damper is an effective device for vibration suppression.

  • PDF

Robust Design of an ER Damper using Taguchi Method (다구찌법을 이용한 ER 댐퍼의 강건 설계)

  • 윤영민;배광식;김재환;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.157-162
    • /
    • 2003
  • This Paper presents a robust design of an Electrorheological(ER) damper using Taguchi method. Taguchi method is a robust design method that determines control parameters in the presence of noise effect. Electrode length, electrode gap, base oil viscosity and the weight ratio of ER particles are chosen for the control parameters and the temperature is considered to be a noise factor. The sensitivity of each factor with signal-to-noise(S/N) ratio and analysis of variance are investigated. The analysis results show that the electrode length and base oil viscosity of the ER fluid mostly affect the damping force in the absence of electric field. On the other hand, when the voltage is applied to the ER damper, the electrode length and the weight ratio of ER fluid exhibit significant effect. Based on the Taguchi method, an optimal configuration was designed and the robustness of the designed ER damper was validated by comparing the analysis and experimental results.

  • PDF

Effect of MDOF structures' optimal dampers on seismic fragility of piping

  • Jung, Woo Young;Ju, Bu Seog
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.563-576
    • /
    • 2015
  • Over the past few decades, seismic retrofitting of structural systems has been significantly improved by the adoption of various methods such as FRP composite wraps, base isolation systems, and passive/active damper control systems. In parallel with this trend, probabilistic risk assessment (PRA) for structural and nonstructural components has become necessary for risk mitigation and the achievement of reliable designs in performance-based earthquake engineering. The primary objective of the present study was to evaluate the effect on piping fragility at T-joints due to seismic retrofitting of structural systems with passive energy-dissipation devices (i.e., linear viscous dampers). Three mid-rise building types were considered: without any seismic retrofitting; with distributed damper systems; with optimal placement of dampers. The results showed that the probability of piping system failure was considerably reduced in a Multi Degree of Freedom (MDOF) building retrofitted with optimal passive damper systems at lower floor levels. This effect of damper systems on piping fragility became insignificant as the floor level increased.