• Title/Summary/Keyword: damaged pier

Search Result 31, Processing Time 0.026 seconds

A Case Study on the Assessment of Damaged Cause for the Damaged Reinforced Concrete Pier

  • Chai, Won-Kyu;Kim, Kwang-Il;Son, Young-Hyun
    • International Journal of Safety
    • /
    • v.10 no.1
    • /
    • pp.16-21
    • /
    • 2011
  • In this thesis, appearance inspection, compressive strength of concrete test, arrangement of bar inspection, survey, and bearing stress analysis were performed on a damaged coping of reinforced concrete pier to investigate the damage cause. According to the performed a series of inspections, it was found that the coping of pier was damaged during PSC (Pre-stressed Concrete) beam construction. In this thesis, the repair method for damaged pier was studied. The repair procedure used in this thesis was follows : chipping for damaged part, clean by high-pressure, installation of wire mesh, coating of surface hardening, construction of section restoration material, copula grinding, and prevent coating for far-infrared radiation.

  • PDF

Vibration analysis of train-bridge system with a damaged pier by flotilla collision and running safety of high-speed train

  • Xia, Chaoyi;Wang, Kunpeng;Huang, Jiacheng;Xia, He;Qi, Lin;Wu, Xuan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.69-79
    • /
    • 2022
  • The dynamic responses of a pier-pile-soil system subjected to a barge/flotilla collision are analyzed. A coupled high-speed train and bridge system with a damaged pier after barge/flotilla collision is established by taking the additional unevenness of the track induced by the damaged pier as the self-excitation of the system. The whole process of a CRH2 high-speed train running on the 6×32 m simply-supported PC (prestressed concrete) box-girder bridge with a damaged pier is simulated as a case study. The results show that the lateral displacements and accelerations of the bridge with a damaged pier are much greater than the ones before the collision. The running safety indices of the train increase with the train speed as well as with the number of barges in the flotilla. In flotilla collision, the lateral wheel/rail forces of the train exceed the allowable values at a certain speed, which influences the running safety of the trains.

Dynamic analysis of high-speed railway train-bridge system after barge collision

  • Xia, Chaoyi;Ma, Qin;Song, Fudong;Wu, Xuan;Xia, He
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.9-20
    • /
    • 2018
  • In this paper, a framework is proposed for dynamic analysis of train-bridge systems with a damaged pier after barge collision. In simulating the barge-pier collision, the concrete pier is considered to be nonlinear-inelastic, and the barge-bow is modeled as elastic-plastic. The changes of dynamic properties and deformation of the damaged pier, and the additional unevenness of the track induced by the change of deck profile, are analyzed. The dynamic analysis model for train-bridge coupling system with a damaged pier is established. Based on the framework, an illustrative case study is carried out with a $5{\times}32m$ simply-supported PC box-girder bridge and the ICE3 high-speed train, to investigate the dynamic response of the bridge with a damaged pier after barge collision and its influence on the running safety of high-speed train. The results show that after collision by the barge, the vibration properties of the pier and the deck profile of bridge are changed, forming an additional unevenness of the track, by which the dynamic responses of the bridge and the car-body accelerations of the train are increased, and the running safety of high-speed train is affected.

Damage Effects on the Natural Frequency of Concrete Pier (구체손상에 따른 콘크리트 교각의 고유진동수 변화)

  • Park, Byung-Cheal;Oh, Keum-Ho;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.335-338
    • /
    • 2005
  • This study was performed to verify that the impact vibration test on the damaged concrete pier can be adopted for assessment of the bridge substructure integrity. Using the experimental modal analysis, the dynamic property changes of the concrete pier are investigated according to the damage levels which are modeled by the loss of cross section area of the pier body. As a result of the impact vibration test, it is found that the natural frequency of the bridge substructure is reduced due to the damage on the pier such as loss of cross section area, and the natural frequency can be used for assessment of the integrity index.

  • PDF

Verification and Mitigation of Seismic Failure in Concrete Piers under Near-field Earthquakes

  • Ikeda, Shoji;Hayashi, Kazuhiko;Naganuma, Toshihiko
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.1-11
    • /
    • 2007
  • This paper verifies the difference of the seismic behavior and seismic damage of the neighboring two reinforced concrete piers damaged by the 1995 Hyogoken Nanbu earthquake. The two piers were almost the same size, carrying slightly different dead load, and were provided with the same reinforcement arrangement except the amount of longitudinal reinforcement at the bottom portion of the piers. The pier with more reinforcement was completely collapsed due to this near field earthquake by shear failure at the longitudinal reinforcement cut-off while the other was only damaged at the bottom by flexure even though the longitudinal reinforcement cut-off was also existed at the mid height of the pier. According to the results of the pseudo dynamic test, the seismic damage was recognized to be greatly dependent on the ground motion characteristics even though the employed ground motions had the same peak acceleration. The severe damage was observed when the test employed the seismic wave that had strong influence to the longer period range compared to the initial natural period of the pier. On the other hand, based on the similar model experiment, the defect of gas-pressure welded splice of longitudinal reinforcement was revealed to save the piers against collapse due to the so-called fail-safe mechanism contrary to the intuitive opinion of some researchers. It was concluded that the primary cause of the collapse of the pier was the extremely strong intensity and peculiar characteristics of the earthquake motion according to both the site-specific and the structure-specific effects.

Aftershock Fragility Assessment of Damaged RC Bridge Piers Repaired with CFRP Jackets under Successive Seismic Events (CFRP 교각 재킷 보수를 적용한 손상된 철근콘크리트 교량 교각의 여진 취약도 분석)

  • Jeon, Jong-Su;Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.271-280
    • /
    • 2018
  • This paper presents a framework for developing aftershock fragility curves for reinforced concrete bridges initially damaged by mainshocks. The presented aftershock fragility is a damage-dependent fragility function, which is conditioned on an initial damage state resulting from mainshocks. The presented framework can capture the cumulative damage of as-built bridges due to mainshock-aftershock sequences as well as the reduced vulnerability of bridges repaired with CFRP pier jackets. To achieve this goal, the numerical model of column jackets is firstly presented and then validated using existing experimental data available in literature. A four-span concrete box-girder bridge is selected as a case study to examine the application of the presented framework. The aftershock fragility curves are derived using response data from back-to-back nonlinear dynamic analyses under mainshock-aftershock sequences. The aftershock fragility curves for as-built bridge columns are firstly compared with different levels of initial damage state, and then the post-repair effect of FRP pier jacket is examined through the comparison of aftershock fragility curves for as-built and repaired piers.

A Study on the Seismic Evaluation of Steel Piers by Earthquake Response Characterisitcs (지진응답특성에 의한 강재교각의 내진성 평가에 관한 연구)

  • 권영록;손영호;최광규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.3
    • /
    • pp.45-53
    • /
    • 2000
  • 강재 교각을 갖는 고가교량은 상부구조가 매우 큰 질량을 갖는 거대구조가 되고 규모가 큰 지진운동 하에서 대단히 큰 관성력을 받게 된다. 따라서 탄소성 동적응답 해석에 의해서 강재 교각의 지진거동을 파악하는 것이 필요하다 . 본 연구에서는, 탄소성 동적응답해석을 위한 합리적인 수치해석방법을 제시하고 이를 바탕으로 강재 교각에 대한 내진성 평가를 수행한다. 1995년 고베 지진 시 손상을 받은 강재 교각과 그 이후 재구축된 교각을 모델로 해서 국부좌굴 이전 소성화의 영향만을 고려한 강재 교각의 지진 거동을 파악한다. 입력지진파는 고베 지진시 관측된 Takatori 지진파이고 이를 가속도 진폭 조정하여 사용한다.

  • PDF

Experimental and numerical investigation of the seismic performance of railway piers with increasing longitudinal steel in plastic hinge area

  • Lu, Jinhua;Chen, Xingchong;Ding, Mingbo;Zhang, Xiyin;Liu, Zhengnan;Yuan, Hao
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.545-556
    • /
    • 2019
  • Bridge piers with bending failure mode are seriously damaged only in the area of plastic hinge length in earthquakes. For this situation, a modified method for the layout of longitudinal reinforcement is presented, i.e., the number of longitudinal reinforcement is increased in the area of plastic hinge length at the bottom of piers. The quasi-static test of three scaled model piers is carried out to investigate the local longitudinal reinforcement at the bottom of the pier on the seismic performance of the pier. One of the piers is modified by increased longitudinal reinforcement at the bottom of the pier and the other two are comparative piers. The results show that the pier failure with increased longitudinal bars at the bottom is mainly concentrated at the bottom of the pier, and the vulnerable position does not transfer. The hysteretic loop curve of the pier is fuller. The bearing capacity and energy dissipation capacity is obviously improved. The bond-slip displacement between steel bar and concrete decreases slightly. The finite element simulations have been carried out by using ANSYS, and the results indicate that the seismic performance of piers with only increasing the number of steel bars (less than65%) in the plastic hinge zone can be basically equivalent to that of piers that the number of steel bars in all sections is the same as that in plastic hinge zone.

Evaluation of Curvature Analysis at RC Bridge Piers in an aspect ratio of 2.5 (형상비 2.5 RC 교각의 곡률분석평가)

  • 박창규;정영수;이은희;김영섭
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.263-270
    • /
    • 2003
  • Before the implementation of the 1992 seismic design provisions in Korea, longitudinal steels of RC bridge piers were practically lap-spliced in the plastic hinge region. Experimental investigation was made to evaluate the seismic performance of RC bridge pier specimens in a flexure/shear mode. Six circular test specimens in an aspect ratio of 2.5 (600mm in diameter) were made with test parameters confinement ratio, lap splices, and retrofit FRP materials. They were damaged under a series of artificial earthquakes with 0.22g PGA, being compatible in Korean peninsula, through the pseudo-dynamic test. Probable damages were assessed by the Park and Ang damage index. Approximate 0.1 and 0.3 damage indices were obtained for RC specimens without lap splice and with lap splice, respectively. Directly after the pseudo-dynamic test, damaged test columns were laterally actuated under inelastic reversal cyclic loadings simultaneously under a constant axial load. Through curvature measurements, residual seismic performance was evaluated for test specimens. Test results show that RC pier specimens with lap-spliced appeared to fail at low ductility, but significant improvement was obtained for the ductility of these specimens if externally wrapped with FRP.

  • PDF

Effects of Bearing Damage on Bridge Seismic Responses (교량시스템의 지진응답특성에 미치는 받침손상의 영향)

  • 김상효;마호성;이상우;조병철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.287-294
    • /
    • 2001
  • Dynamic responses of multi-span simply supported bridges are investigated to examine the effect of damaged bearings under seismic excitations. The damaged bearings are modeled as sliding elements with friction between the super-structure and the pier top. Various values of the friction coefficients for damaged bearings are examined with increasing magnitudes of peak ground accelerations. It is found that the g1oba1 seismic behaviors are significantly influenced by the occurrence of bearing damage. It should be noticed that the most possible location of unseating failure of superstructures differs with that in the model without consideration of the bearing damage. It can be concluded that the bearing damage may play the major role in the unseating failure of a bridge system, so that the damage of bearings should be included to achieve more rational seismic safety evaluation.

  • PDF