• 제목/요약/키워드: damage variable

검색결과 372건 처리시간 0.032초

인장-비틀림 하중에 의한 섬유강화 복합재료의 피로수명 예측 (Fatigue Life Prediction of FRP Composites under Uniaxial Tension and Pure Torsion Loadings)

  • 박성완;이장규
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.352-361
    • /
    • 2003
  • A fatigue damage accumulation model based on the continuum damage mechanics theory was develope(1 where modules decay ratios in tension and shear on used as indicators for damage variables D . In the model, the damage variables are considered to be second-order tensors. Then the maximum principal damage variable, $D^*$ is introduced According to the similarity to the Principal stress, $D^*$ is obtained as the maximum eigen value of damage tensor [D']. Under proportional tension and torsion loadings, fatigue lives were satisfactorily predicted at any combined stress ratios using the present model in which the fatigue characteristics only under uniaxial tension and pure torsion loadings on needed. Fatigue life prediction under uniaxial tension and pure torsion loadings, was performed based on the damage mechanics using boundary element method.

  • PDF

손상모형을 이용한 철근 콘크리트 교각의 지진여유도 해석 (Seismic Margin Analysis of Reinforced Concrete Pier Using Damage Model Proceedings)

  • 고현무;이지호;정우영;조호현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.220-227
    • /
    • 2002
  • This study introduces the fragility analysis method for the safety evaluation of reinforced concrete pier subject to earthquake. Damage probability is calculated instead of the failure probability from definition of the damage state in the fragility curve. Not only the damage model determined by the response of structure subject to earthquake, but also the plastic-damage model which can represent the local damage is applied to fragility analysis. The evaluation method of damage state by damage variable in global structure is defined by this procedure. This study introduces the fragility analysis method considering the features of nonlinear time history behavior of reinforced concrete element and the plastic behavior of materials. At last, This study gives one of the approach method for seismic margin evaluation with the result of fragility analysis to design seismic load.

  • PDF

연속형 변수 회귀분석을 통한 열수송관 파손빈도 분석 (Continuous Variable Regression Analysis for Frequency of Damage Analysis in Heat Pipe)

  • 공명식;강재모;이성열
    • 한국지반환경공학회 논문집
    • /
    • 제24권12호
    • /
    • pp.47-52
    • /
    • 2023
  • 지역난방사업자가 운영하는 열수송관의 효율적인 유지관리를 위해 사업자가 구축한 설비이력 및 파손이력 데이터를 활용하여 파손발생과 연관성을 가지는 주요 독립변수를 확인한 후, 파손빈도와의 상관관계를 분석하고, 파손빈도 추정을 위한 기본모델을 도출하였다. 국내외 지역난방사업자가 기존에 활용 중인 사용기간 기반의 추정 모델과의 연관성을 고려하여 사용기간 뿐만 아니라 관경, 매설깊이, 감시시스템 절연레벨 등 연속형 변수와 파손빈도의 상관성이 가장 높은 독립변수로 단순회귀분석 기본모델을 제시하였으며, 나머지 독립변수는 기본모델을 수정, 보완하는 인자로 반영하였다. 분석 결과 기존 연구사례와 마찬가지로 사용기간과 파손빈도간 분석 모델의 적합성과 두 변수간 상관성이 가장 높은 것으로 확인되어 기본모델로 활용 가능하다. 관경, 매설깊이, 감시시스템 절연레벨 정보 역시 파손빈도와의 상관성이 확인되어 기본모델을 보완하기 위한 인자로 활용 가능하다.

Theoretical formulation of double scalar damage variables

  • Xue, Xinhua;Zhang, Wohua
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.501-507
    • /
    • 2017
  • The predictive utility of a damage model depends heavily on its particular choice of a damage variable, which serves as a macroscopic approximation in describing the underlying micromechanical processes of microdefects. In the case of spatially perfectly randomly distributed microcracks or microvoids in all directions, isotropic damage model is an appropriate choice, and scalar damage variables were widely used for isotropic or one-dimensional phenomenological damage models. The simplicity of a scalar damage representation is indeed very attractive. However, a scalar damage model is of somewhat limited use in practice. In order to entirely characterize the isotropic damage behaviors of damaged materials in multidimensional space, a system theory of isotropic double scalar damage variables, including the expressions of specific damage energy release rate, the coupled constitutive equations corresponding to damage, the conditions of admissibility for two scalar damage effective tensors within the framework of the thermodynamics of irreversible processes, was provided and analyzed in this study. Compared with the former studies, the theoretical formulations of double scalar damage variables in this study are given in the form of matrix, which has many features such as simpleness, directness, convenience and programmable characteristics. It is worth mentioning that the above-mentioned theoretical formulations are only logically reasonable. Owing to the limitations of time, conditions, funds, etc. they should be subject to multifaceted experiments before their innovative significance can be fully verified. The current level of research can be regarded as an exploratory attempt in this field.

도심지 지하굴착 및 정보화 시공 (Urban Excavation and Observational Method)

  • 김학문
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.3-14
    • /
    • 2005
  • Reliable predictions of the movement of earth retaining structures and the ground adjacent to braced walls in urban excavation are often difficult due to many variable factors. The ground settlement and the damage of adjacent structures in urban excavation has been an important issue. Therefore, the stability of the adjacent structures must be secured with the excavation support and research on the protection of adjacent structure is necessary. This study showed an urban excavation case and introduce observation method for case of damage behavior in urban excavation.

  • PDF

Homogenization based continuum damage mechanics model for monotonic and cyclic damage evolution in 3D composites

  • Jain, Jayesh R.;Ghosh, Somnath
    • Interaction and multiscale mechanics
    • /
    • 제1권2호
    • /
    • pp.279-301
    • /
    • 2008
  • This paper develops a 3D homogenization based continuum damage mechanics (HCDM) model for fiber reinforced composites undergoing micromechanical damage under monotonic and cyclic loading. Micromechanical damage in a representative volume element (RVE) of the material occurs by fiber-matrix interfacial debonding, which is incorporated in the model through a hysteretic bilinear cohesive zone model. The proposed model expresses a damage evolution surface in the strain space in the principal damage coordinate system or PDCS. PDCS enables the model to account for the effect of non-proportional load history. The loading/unloading criterion during cyclic loading is based on the scalar product of the strain increment and the normal to the damage surface in strain space. The material constitutive law involves a fourth order orthotropic tensor with stiffness characterized as a macroscopic internal variable. Three dimensional damage in composites is accounted for through functional forms of the fourth order damage tensor in terms of components of macroscopic strain and elastic stiffness tensors. The HCDM model parameters are calibrated from homogenization of micromechanical solutions of the RVE for a few representative strain histories. The proposed model is validated by comparing results of the HCDM model with pure micromechanical analysis results followed by homogenization. Finally, the potential of HCDM model as a design tool is demonstrated through macro-micro analysis of monotonic and cyclic damage progression in composite structures.

Degradation and damage behaviors of steel frame welded connections

  • Wang, Meng;Shi, Yongjiu;Wang, Yuanqing;Xiong, Jun;Chen, Hong
    • Steel and Composite Structures
    • /
    • 제15권4호
    • /
    • pp.357-377
    • /
    • 2013
  • In order to study the degradation and damage behaviors of steel frame welded connections, two series of tests in references with different connection constructions were carried out subjected to various cyclic loading patterns. Hysteretic curves, degradation and damage behaviours and fatigue properties of specimens were firstly studied. Typical failure modes and probable damage reasons were discussed. Then, various damage index models with variables of dissipative energy, cumulative displacement and combined energy and displacement were summarized and applied for all experimental specimens. The damage developing curves of ten damage index models for each connection were obtained. Finally, the predicted and evaluated capacities of damage index models were compared in order to describe the degraded performance and failure modes. The characteristics of each damage index model were discussed in depth, and then their distributive laws were summarized. The tests and analysis results showed that the loading histories significantly affected the distributive shapes of damage index models. Different models had their own ranges of application. The selected parameters of damage index models had great effect on the developing trends of damage curves. The model with only displacement variable was recommended because of a more simple form and no integral calculation, which was easier to be formulated and embedded in application programs.

재해시 학교시설의 환경적 지각 정도에 따른 학생의 활동제한의 분석: 수도권 고등학교를 중심으로 (The Analysis of Student's Acts within Limits When Encountering Natural Disasters caused by the Degree of Environmental Sensibility of School Facilities according to Natural Disaster Damage: Focusing on High-schools in Seoul Metropolitan Area)

  • 민창기
    • 교육시설
    • /
    • 제13권4호
    • /
    • pp.31-42
    • /
    • 2006
  • This study is about an analysis of the relation between the degree of cognition of student's acts within limits when coping with several types of disaster and the degree of cognition of damage by disasters in the method of multiple regression analysis. The dependent variable is the degree of cognition of student's acts within limits and the independent variable is the degree of cognition of damage by disasters such as heavy snow, typhoon, heavy rain, heat, and yellow sand. A survey of graduates of metropolitan area high-schools has found that there are no difference between girls and boys of the degree of cognition of student's acts within limits when coping with disasters. This study finds that the independent variable, which are playgrounds, animals and plants, streets and roads, altitude and incline, gives positive effect to the degree of cognition of student's acts within limits when coping with typhoon or heavy rain in order. The study also finds that the degree of cognition of student's acts within limits when coping with heavy snow is affected positively by streets and roads, playgrounds, altitude and incline in order. It also shows that there are factors that has an effect to the degree of cognition of student's acts within limits when coping with yellow sand and heat. This study proposes suggestions to facility plans based on these facts discovered.

손상누적모델의 비교를 통한 플래퍼론 연결부의 피로수명 예측 (Comparison of Cumulative Damage Models by predicting Fatigue lives of Aircraft Flaperon Joint)

  • 박태영;박정선
    • 항공우주시스템공학회지
    • /
    • 제3권4호
    • /
    • pp.27-34
    • /
    • 2009
  • This paper deals with the lifetime prediction of Aircraft Flaperon Joint made of AISI 4130 steel. Reviews are performed on the published damage models at first. And three different damage models are used for predicting the fatigue life of the structure subjected to variable amplitude fatigue loading. These models require no increase in complexity of use, nor do they require additional material property or mission loading information to achieve the improved accuracy. Finally a comparison among the fatigue results is performed. It is observed that the Miner's rule could predict longer life than other cumulative damage models which take into account loads below the endurance limit.

  • PDF

An implicit damage-plastic model for concrete

  • Gustavo Luz Xavier da Costa
    • Computers and Concrete
    • /
    • 제33권3호
    • /
    • pp.301-308
    • /
    • 2024
  • This paper proposes a numerically-based methodology to implicitly model irreversible deformations in concrete through a damage model. Plasticity theory is not explicitly employed, although resemblances are still present. A scalar isotropic damage model is adopted and the damage variable is split in two: one contributing for stiffness degradation (cracking) and other contributing for irreversible deformations (plasticity). The proposed methodology is thermodynamically consistent as it consists in a damage model rewritten in different terms. Its Finite Element coding is presented, indicating that minor changes are necessary. It is also demonstrated that nonlinear algorithms are unnecessary to model concrete cracking and plasticity. Experimental data from direct tension and four-point bending tests under cyclic loading are compared to the proposed methodology. A numerical case study of a low-cycle fatigue is also presented. It can be concluded that the model is simple, feasible and capable to capture the essentials concerning cracking and plasticity.