References
- Alexandrov, S. and Jeng, Y.R. (2011), "Damage evolution in an expanding/contracting hollow sphere at large strains", Contin. Mech. Thermodyn., 23(6), 573-580. https://doi.org/10.1007/s00161-011-0192-y
- Alexander, M., Tomas, R. and Marita, T. (2012), "From damage to delamination in nonlinearly elastic materials at small strains", J. Elast., 109(2), 235-273. https://doi.org/10.1007/s10659-012-9379-0
- Cauvin, A. and Testa, R. (1999), "Damage mechanics: Basic variables in continuum theories", J. Sol. Struct., 36(5), 747-761. https://doi.org/10.1016/S0020-7683(98)00044-4
- Chow, C.L. and Wei, Y. (1999), "Constitutive modeling of material damage for fatigue failure prediction", J. Damage Mech., 8(4), 355-375. https://doi.org/10.1177/105678959900800405
- D'Annibale, F. and Luongo, A. (2013), "A damage constitutive model for sliding friction coupled to wear", Contin. Mech. Thermodyn., 25(2-4), 503-522. https://doi.org/10.1007/s00161-012-0283-4
- Fan, X.Q., Hu, S.W. and Lu, J. (2016), "Damage and fracture processes of concrete using acoustic emission arameters", Comput. Concrete, 18(2), 267-278. https://doi.org/10.12989/cac.2016.18.2.267
- Jaric, J., Kuzmanovic, D. and Numarac, D. (2012), "On anisotropic elasticity damage mechanics", J. Damage Mech., 22(7), 1023-1038.
- Ju, J.W. (1990), "Isotropic and anisotropic damage variables in continuum damage mechanics", J. Eng. Mech., 116(12), 2764-2770. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:12(2764)
- Kachanov, L.M. (1958), "Time of the rupture process under creep conditions", Izv. Akad. Nauk, USSR, 8, 26-31.
- Lemaitre, J. (1984), "How to use damage mechanics", Nucl. Eng. Des., 80(2), 233-245. https://doi.org/10.1016/0029-5493(84)90169-9
- Lemaitre, J. (1985), "A continuous damage mechanics model for ductile fracture", J. Eng. Mater.-T ASME., 107(1), 83-89. https://doi.org/10.1115/1.3225775
- Li, R. and Li, X. (2010), "A coupled chemo-elastoplastic-damage constitutive model for plain concrete subjected to high temperature", J. Damage Mech., 19(8), 971-1000. https://doi.org/10.1177/1056789509359667
- Mao, Y.Q., Fu, Y.M. and Tian, Y.P. (2012), "Nonlinear dynamic response and active control of piezoelastic laminated shallow spherical shells with damage", J. Damage Mech., 21(6), 783-809. https://doi.org/10.1177/1056789511417751
- Mitsuru, O., Takuya, F., and Fumiyoshi, M. (2010), "Damage model for predicting the effect of steel properties on ductile crack growth resistance", J. Damage Mech., 19(4), 441-459. https://doi.org/10.1177/1056789509103704
- Misra, A. and Singh, V. (2013), "Micromechanical model for viscoelastic materials undergoing damage", Contin. Mech. Thermodyn., 25, 343-358. https://doi.org/10.1007/s00161-012-0262-9
- Ohata, M. and Toyoda, M. (2006), "Damage mechanism for controlling ductile cracking of structural steel with heterogeneous microstructure", Mater. Sci. For., 512, 31-36.
- Pham, K. and Marigo, J.J. (2013), "From the onset of damage to rupture: Construction", Contin. Mech. Thermodyn., 25, 147-171. https://doi.org/10.1007/s00161-011-0228-3
- Rabotnov, I.N. (1963), On the Equations of State for Creep, Progress in Applied Mechanics-the Prager Anniversary Volume, Macmillan, New York, U.S.A.
- Rinaldi, A. (2013), "Bottom-up modeling of damage in heterogeneous quasi-brittle solids", Contin. Mech. Thermodyn., 25, 359-373. https://doi.org/10.1007/s00161-012-0265-6
- Selvadurai, A.P.S. (2004), "Stationary damage modeling of poroelastic contact", J. Sol. Struct., 41(8), 2043-2064. https://doi.org/10.1016/j.ijsolstr.2003.08.023
- Tan, K.T. and Watanabe, N. (2012), "Impact damage resistance, response, and mechanisms of laminated composites reinforced by through-thickness stitching", J. Damage Mech., 21(1), 51-80. https://doi.org/10.1177/1056789510397070
- Thakkar, B.K. and Panley, P.C.A. (2007), "Isotropic continuum damage evolution model", J. Damage Mech., 16, 403-426. https://doi.org/10.1177/1056789506065897
- Tang, C.Y., Shen, W., Peng, L.H. and Lee, T.C. (2002), "Characterization of isotropic damage using double scalar variables", J. Damage Mech., 11(1), 3-25. https://doi.org/10.1106/105678902023194
- Umit, C., Voyiadjis, G.Z. and Rashid, K.A.A.R. (2007), "A plasticity and anisotropic damage model for plain concrete", J. Plastic., 23(10), 1874-1900. https://doi.org/10.1016/j.ijplas.2007.03.006
- Voyiadjis, G.A., Taqieddin, Z.N. and Kattan, P.I. (2009), "Theoretical formulation of a coupled elastic-plastic anisotropic damage model for concrete using the strain energy equivalence concept", J. Damage Mech., 18(7), 603-638. https://doi.org/10.1177/1056789508092399
- Voyiadjis, G.A., Taqieddin, Z.A. and Kattan, P.I. (2008), "Anisotropic damage-plasticity model for concrete", J. Plastic., 24(10), 1946-1965. https://doi.org/10.1016/j.ijplas.2008.04.002
- Voyiadjis, G.A. and Kattan, P.I. (2009), "A comparative study of damage variables in continuum damage echanics", J. Damage Mech., 18(4), 315-340. https://doi.org/10.1177/1056789508097546
- Wang, S.S., Ren, Q.W. and Qiao, P.Z. (2006), "Structural damage detection using local damage factor", J. Vibr. Control, 12(9), 955-973. https://doi.org/10.1177/1077546306068286
- Xue, X.H. (2008), "Non-linear damage mechanics theory of coupled fluid-solid with numerical analysis of geo-materials", Ph.D. Dissertation, Zhejiang University, Hangzhou, China.
- Xue, X.H., Yang, X.G., Zhang, W.H. and Dai, F. (2014), "A soil damage model expressed by a double scalar and its applications", Acta Mech., 225(9), 2667-2683. https://doi.org/10.1007/s00707-014-1097-1
- Xiong, C.S., Jiang, L.H., Zhang, Y. and Chu, H.Q. (2015), "Modeling of damage in cement paste subjected to external sulfate attack", Comput. Concrete, 16(6), 865-880. https://doi.org/10.12989/cac.2015.16.6.865
- Zhou, W.Y., Zhao, J.D., Liu, Y.G. and Yang, Q. (2002), "Simulation of localization failure with strain-gradientenhanced damage mechanics", J. Numer. Anal. Meth. Geomech., 26(8), 793-813. https://doi.org/10.1002/nag.225
- Zhang, W.H. and Cai, Y.Q. (2010), Continuum Damage Mechanics and Numerical Applications, Zhejiang University Press, Hangzhou, China.