• 제목/요약/키워드: damage value

검색결과 1,590건 처리시간 0.027초

신경망을 이용한 구조물 접합부의 손상도 추정 (Structural Joint Damage Assessment using Neural Networks)

  • 방은영
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.131-138
    • /
    • 1998
  • Structural damage is used to be modeled through reductions in the stiffness of structural elements for the purpose of damage estimation of structural system. In this study, the concept of joint damage is employed for more realistic damage assessment of a steel structure. The joint damage is estimated damage based on the mode shape informations using neural networks. The beam-to-column connection in a steel frame structure is represented by a rotational spring at the fixed end of a beam element. The severity of joint damage is defined as the reduction ratio of the connection stiffness with respect to the value of the intact joint. The concept of the substructural identification is used for the localized damage assessment in a large structure. The feasibility of the proposed method is examined using an example with simulated data. It has been found that the joint damages can be reasonably estimated for the case with the measurements of the mode vectors subjected to noise.

  • PDF

자동차 언더바의 구조 및 피로해석을 통한 내구성 연구 (A Study on Durability of Under Bar at Car through Structural and Fatigue Analysis)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제14권2호
    • /
    • pp.44-50
    • /
    • 2015
  • This study investigated the durability of the under bar of a car through structural and fatigue analysis. Model 1 had the lowest value among three kinds of models. In the case of the maximum equivalent stress and displacement at structural analysis, model 1 showed the highest durability. Also, models 3 and 2 showed structural durability in order of this value. In the case of fatigue analysis, the maximum fatigue lives of the three models were equal to $2{\times}10^7$cycles. However, model 1 showed the highest value among the three models, as the minimum fatigue life of model 1 becames 92.56 cycles. Also models 3 and 2 showed fatigue durability in order of this value. The maximum possibility of fatigue damage for models1,2,and 3 became 30%. If the results of this study are applied to change the design shape of the under bar of cars, the ride comfort for automobile passengers and car durability can be improved.

판재 압연에서의 결함성장과 집합조직의 발전 (Damage Evolution and Texture Development During Plate Rolling)

  • 이용신
    • 소성∙가공
    • /
    • 제9권4호
    • /
    • pp.372-378
    • /
    • 2000
  • A process model including the effects of both the texture development and ductile damage evolution In plane strain rolling is presented. In this process model, anisotropy from deformation texture and deterioration of mechanical properties due to growth of micro voids are directly coupled Into the virtual work expressions for the momentum and mass balances. Special treatments in obtaining the initial values of field variables in the nonlinear simultaneous equations for the anisotropic, dilatant viscoplastic deformation are also given. Mutual effects of the texture development and damage evolution during plate rolling are carefully examined in terms of the distribution of strain components, accumulated damage, R-value as well as yield surfaces.

  • PDF

Self-healing capacity of damaged rock salt with different initial damage

  • Chen, Jie;Kang, Yanfei;Liu, Wei;Fan, Jinyang;Jiang, Deyi;Chemenda, Alexandre
    • Geomechanics and Engineering
    • /
    • 제15권1호
    • /
    • pp.615-620
    • /
    • 2018
  • In order to analyze the healing effectiveness of rock salt cracks affected by the applied stresses and time, we used the ultrasonic technology to monitor the ultrasonic pulse velocity (UPV) variations for different initial stress-damaged rock salts during self-healing experiments. The self-healing experiments were to create different conditions to improve the microcracks closure or recrystallized, which the self-healing effect of damaged salt specimens were analyzed during the recovery period about 30 days. We found that: The ultrasonic pulse velocity of the damaged rock salts increases rapidly during the first 9 days recovery, and the values gradually increase to reach constant values after 30 days. The damaged value and the healed value were identified based on the variation of the wave velocity. The damaged values of the specimens that are subject to higher initial damage stress are still keeping in large after 30 days recovery under the same recovery condition It is interesting that the damage and the healing were not in the linear relationship, and there also existed a damage threshold for salt cracks healing ability. When the damage degree is less than the threshold, the self-healing ratio of rock salt is increased with the increase in damage degree. However, while the damage degree exceeds the threshold, the self-healing ratio is decreased with the increase in damage.

GIS 자료와 연계한 시나리오별 홍수피해액 분석 (Flood Damage Assessment According to the Scenarios Coupled with GIS Data)

  • 이근상;박진혁
    • 대한공간정보학회지
    • /
    • 제19권4호
    • /
    • pp.71-80
    • /
    • 2011
  • 우리나라는 홍수피해를 평가하기 위한 방법으로 간편법과 개선법을 사용하다가 현재는 2004년도에 개발된 다차원 홍수피해액 산정기법을 활용하고 있다. 본 연구에서는 GIS 자료를 기초로 다차원 홍수피해액 산정기법을 이용한 댐 하류지역의 홍수피해액 평가기법을 제시하였다. 먼저 배수강제알고리듬에 기초한 횡단측선 레이어에 FLDWAV 모델을 이용한 홍수위 자료를 입력한 후 DEM 자료와의 공간연산 처리를 통해 침수심 격자를 생성하였다. 그리고, 수치지형도에서 추출한 건물 레이어와 토지피복도에서 추출한 농경지 자료를 이용하여 지자체별 건물과 농경지 자산가치를 평가하였다. 또한 건축형태별 건축단가, 도시유형별 가정용품 평가액, 농작물 단가정보, 사업체의 유형 및 재고자산 평가액 자료를 건물, 농경지, 침수심 레이어와 연계하여 항목별로 피해액을 산정하였다. 홍수피해액 분석을 통해, 200년 빈도의 홍수피해액이 100년, 50년, 10년 빈도에 비해 각각 1.19배, 1.30배 그리고 1.96배 높게 나타났다.

Applications of Hilbert-Huang transform to structural damage detection

  • Chiou, Dung-Jiang;Hsu, Wen-Ko;Chen, Cheng-Wu;Hsieh, Chih-Min;Tang, Jhy-Pyng;Chiang, Wei-Ling
    • Structural Engineering and Mechanics
    • /
    • 제39권1호
    • /
    • pp.1-20
    • /
    • 2011
  • This study investigates the feasibility of detecting structural damage using the HHT method. A damage detection index, the ratio of bandwidth (RB) is proposed. This index is highly correlated or approximately equal to the change of equivalent damping ratio for an intact structure incurring damage from strong ground motions. Based on an analysis of shaking table test data from benchmark models subjected to adjusted Kobe and El Centro earthquakes, the damage detection index is evaluated using the Hilbert-Huang Transform (HHT) and the Fast Fourier Transform (FFT) methods, respectively. Results indicate that, when the response of the structure is in the elastic region, the RB value only slightly changes in both the HHT and the FFT spectra. Additionally, RB values estimated from the HHT spectra vs. the PGA values change incrementally when the structure response is nonlinear i.e., member yielding occurs, but not in the RB curve from the FFT spectra. Moreover, the RB value of the top floor changes more than those from the other floors. Furthermore, structural damage is detected only when using the acceleration response data from the top floor. Therefore, the ratio of bandwidth RB estimated from the smoothed HHT spectra is an effective and sensitive damage index for detecting structural damage. Results of this study also demonstrate that the HHT is a powerful method in analyzing the nonlinear responses of steel structures to strong ground motions.

신경망과 절삭력을 이용한 공구이상상태감지에 관한 연구. (A Study on Cutting Toll Damage Detection using Neural Network and Cutting Force Signal)

  • 임근영;문상돈;김성일;김태영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.982-986
    • /
    • 1997
  • A method using cutting force signal and neural network for detection tool damage is proposed. Cutting force signal is gained by tool dynamometer and the signal is prepocessed to normalize. Cutting force signal is changed by tool state. When tool damage is occurred, cutting force signal goes up in comparison with that in normal state. However,the signal goes down in case of catastrophic fracture. These features are memorized in neural network through nomalizing couse. A new nomalizing method is introduced in this paper. Fist, cutting forces are sumed up except data smaller than threshold value, which is the cutting force during non-cutting action. After then, the average value is found by dividing by the number of data. With backpropagation training process, the neural network memorizes the feature difference of cutting force signal between with and without tool damage. As a result, the cutting force can be used in monitoring the condition of cutting tool and neural network can be used to classify the cutting force signal with and without tool damage.

  • PDF

와이어 소잉 데미지 층이 단결정 실리콘 태양전지 셀 특성에 미치는 영향 (Relation Between Wire Sawing-damage and Characteristics of Single Crystalline Silicon Solar-cells)

  • 김일환;박준성;박재근
    • Current Photovoltaic Research
    • /
    • 제6권1호
    • /
    • pp.27-30
    • /
    • 2018
  • The dependency of the electrical characteristics of silicon solar-cells on the depth of damaged layer induced by wire-sawing process was investigated. To compare cell efficiency with residual sawing damage, silicon solar-cells were fabricated by using as-sawn wafers having different depth of saw damage without any damaged etching process. The damaged layer induced by wire-sawing process in silicon bulk intensely influenced the value of fill factor on solar cells, degrading fill factor to 57.20%. In addition, the photovoltaic characteristics of solar cells applying texturing process shows that although the initial depth of saw-damage induced by wire-sawing process was different, the value of short-circuit current, fill-factor, and power-conversion-efficiency have an almost same, showing ~17.4% of cell efficiency. It indicated that the degradation of solar-cell efficiency induced by wire-sawing process could be prevented by eliminating all damaged layer through sufficient pyramid-surface texturing process.

등방성손상을 고려한 탄소성 대변형 무제의 유한요소해석(제2보) (Finite Element Analysis of Elasto-Plastic Large Deformation considering the Isotropic Damage(the 2nd Report))

  • 이종원
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.76-83
    • /
    • 2000
  • this paper was concentrated on the finite element formulation to solve boundary value problems by using the isotropic elasto-plastic damage constitutive model proposed previously(Noh, 2000) The plastic damage of ductile materials is generally accompanied by large plasticdeformation and strain. So nonlinearity problems induced by large deformation large rotation and large strain behaviors were dealt with using the nonlinear kinematics of elasto-plastic deformations based on the continuum mechanics. The elasto-plastic damage constitutive model was applied to the nonlinear finite element formulation process of Shin et al(1997) and an improved analysis model considering the all nonlinearities of structural behaviors is proposed. Finally to investigate the applicability and validity of the numerical model some numerial examples were considered.

  • PDF

Baseline-free damage detection method for beam structures based on an actual influence line

  • Wang, Ning-Bo;Ren, Wei-Xin;Huang, Tian-Li
    • Smart Structures and Systems
    • /
    • 제24권4호
    • /
    • pp.475-490
    • /
    • 2019
  • The detection of structural damage without a priori information on the healthy state is challenging. In order to address the issue, the study presents a baseline-free approach to detect damage in beam structures based on an actual influence line. In particular, a multi-segment function-fitting calculation is developed to extract the actual deflection influence line (DIL) of a damaged beam from bridge responses due to a passing vehicle. An intact basis function based on the measurement position is introduced. The damage index is defined as the difference between the actual DIL and a constructed function related to the intact basis, and the damage location is indicated based on the local peak value of the damage index curve. The damage basis function is formulated by using the detected damage location. Based on the intact and damage basis functions, damage severity is quantified by fitting the actual DIL using the least-square calculation. Both numerical and experimental examples are provided to investigate the feasibility of the proposed method. The results indicate that the present baseline-free approach is effective in detecting the damage of beam structures.