• Title/Summary/Keyword: damage threshold

Search Result 296, Processing Time 0.025 seconds

Experimental and numerical investigation on low-velocity impact behaviour of thin hybrid carbon/aramid composite

  • Sojan Andrews Zachariah;Dayananda Pai K;Padmaraj N H;Satish Shenoy Baloor
    • Advances in materials Research
    • /
    • v.13 no.5
    • /
    • pp.391-416
    • /
    • 2024
  • Hybrid composite materials are widely used in various load-bearing structural components of micro - mini UAVs. However, the design of thin laminates for better impact resistance remains a challenge, despite the strong demand for lightweight structures. This work aims to assess the low-velocity impact (LVI) behaviour of thin quasi-isotropic woven carbon/ aramid epoxy hybrid laminates using experimental and numerical techniques. Drop tower impact test with 10 J and 15 J impact energies is performed on carbon/epoxy laminates having aramid layers at different sequences and locations. The impact behaviour is experimentally evaluated using force-time, force-deformation, and energy-time histories considering delamination threshold load, peak load, and laminate deflection. Ultrasonic C-scan is performed on the post-impact samples to analyse the insidious damage profile at different impact energies. The experimental data is further utilized to numerically simulate LVI behaviour by employing the representative volume element model. The numerical results are in good agreement with the experimental data. Numerical and experimental approach predicts that the hybrid laminates with aramid layers at both impact and non-impact sides of the laminate exhibits significant improvement in the overall impact behaviour by having a subcritical damage morphology compared to carbon/epoxy laminate. A combined numerical-experimental approach is proposed for evaluating the effective impact performance.

Modification of Retinal Function by Hypothermia and Hyperthermia

  • Chon, Young-Shin;Kim, You-Young
    • Journal of Photoscience
    • /
    • v.7 no.4
    • /
    • pp.161-167
    • /
    • 2000
  • Temperature-dependent electroretinogram responses were investigated in the dark adapted bullfrog eyes within the physiological temperature range 0-40$\^{C}$. In hypothermic process(25→0→25$\^{C}$), the amplitude of b-and c-wave decreased with lowering the temperature again. Both b-wave amplitude and threshold responses were maximal around 15$\^{C}$ during the temperature increment. Upon warming to room temperature again (25$\^{C}$), the b-wave amplitude was approximately doubled as compared to that of control without temperature changes. During the hyperthermic process (25→40→25$\^{C}$), however, the responses decreased with warming, and the wave amplitude failed to recover by cooling to 25$\^{C}$ again. As describe above, the recoveries of ERG in both processes show the striking difference. The hypothermia induces the amplification of the b-wave, that is, enhances the retinal function with the temperature recovery toward room temperature. While the hypertherima produces the decrease of the b-wave even though recovered to room temperature, which indicates an irreversible retina. The morphological alteration is shown both hypothermic and hyperthermic process, such as an appearance of large vacuoles and degenerating outer segments, more intense in hyperthermia, similar to light induced damage.

  • PDF

Maskless etching of the PDP barrier rib using focused laser beam (집속 레이저 빔에 의한 PDP 격벽의 마스크레스 식각)

  • Ahn, Min-Young;Lee, Kyoung-Cheol;Lee, Hong-Kyu;Choi, Hoon-Young;Lee, Cheon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1849-1851
    • /
    • 1999
  • The PDP(Plasma Display Panel) barrier rib was fabricated by focused $Ar^+$ laser ($\lambda$=514nm) and Nd:YAG($\lambda$=532, 266 nm) laser irradiation. The depth of the etched groove increases with increasing a laser fluence. and decreasing a scan speed. Using the second harmonic of the Nd:YAG laser, the threshold laser fluence was $6.5mJ/cm^2$ for the sample of PDP barrier rib dried at $120^{\circ}C$. The thickness of $150{\mu}m$ of the sample on the glass was etched without any damage on the glass substrate by fluence of $19.5J/cm^2$. The barrier rib sample on hot plate was etched by Nd:YAG laser(532 nm) as increasing a temperature of the sample. In this case, the etch rate was $95{\mu}m/s$, $190{\mu}m/s$ at room temperature, $175^{\circ}C$ respectively.

  • PDF

Application of Mechanochemical Processing for Preparation of Si3N4-based Powder Mixtures

  • Sopicka-Lizer, Malgorzata;Pawlik, Tomasz
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.337-341
    • /
    • 2012
  • Mechanochemical processing (MCP) involves several high-energy collisions of powder particles with the milling media and results in the increased reactivity/sinterability of powder. The present paper shows results of mechanochemical processing (MCP) of silicon nitride powder mixture with the relevant sintering additives. The effects of MCP were studied by structural changes of powder particles themselves as well as by the resulting sintering/densification ability. It has been found that MCP significantly enhances reactivity and sinterability of the resultant material: silicon nitride ceramics could be pressureless sintered at $1500^{\circ}C$. Nevertheless, a degree of a silicon nitride crystal lattice and powder particle destruction (amorphization) as detected by XRD studies, is limited by the specific threshold. If that value is crossed then particle's surface damage effects are prevailing thus severe evaporation overdominates mass transport at elevated temperature. It is discussed that the cross-solid interaction between particles of various chemical composition, triggered by many different factors during mechanochemical processing, including a short-range diffusion in silicon nitride particles after collisions with other types of particles plays more important role in enhanced reactivity of tested compositions than amorphization of the crystal lattice itself. Controlled deagglomeration of $Si_3N_4$ particles during the course of high-energy milling was also considered.

Survey of spatial and temporal landslide prediction methods and techniques

  • An, Hyunuk;Kim, Minseok;Lee, Giha;Viet, Tran The
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.507-521
    • /
    • 2016
  • Landslides are one of the most common natural hazards causing significant damage and casualties every year. In Korea, the increasing trend in landslide occurrence in recent decades, caused by climate change, has set off an alarm for researchers to find more reliable methods for landslide prediction. Therefore, an accurate landslide-susceptibility assessment is fundamental for preventing landslides and minimizing damages. However, analyzing the stability of a natural slope is not an easy task because it depends on numerous factors such as those related to vegetation, soil properties, soil moisture distribution, the amount and duration of rainfall, earthquakes, etc. A variety of different methods and techniques for evaluating landslide susceptibility have been proposed, but up to now no specific method or technique has been accepted as the standard method because it is very difficult to assess different methods with entirely different intrinsic and extrinsic data. Landslide prediction methods can fall into three categories: empirical, statistical, and physical approaches. This paper reviews previous research and surveys three groups of landslide prediction methods.

Measurement of electro-physiological changes in the brain exposed to eletromagnetic wave radiation (전자파에 노출된 생체두부의 전기생리적 변화의 측정에 관한 연구)

  • 이준하;신현진;이상학;유동수;이무영;김성규
    • Progress in Medical Physics
    • /
    • v.5 no.2
    • /
    • pp.35-43
    • /
    • 1994
  • Electromagnetic wave may induce effect and damage on the bio-body, either by electric fields of magnetic fields. We measure electrophysiological changs in rabbit's brain exposed to 2.45GHz micro wave(power density 40mW/cm$^2$) which distance 30cm from the source. In order to process the bio-electrical signal (EEG), used pre-amplifier module with self-made and Digtal analyzer computer system. Spectal analysis of the EEG showed variable power in the frequency range(1~30Hz) through each exposure time(10min, 20min, 30min) before and after. In effectively measured by the bio-electrical signal processing and can found threshold of minmal permissible exposure and lethal exposure.

  • PDF

The Analysis for Flood Damage on Nam-sa Down Stream Region (남사천 하류지역 홍수피해 분석)

  • 김가현;이영대;서진호;민일규
    • Journal of Environmental Science International
    • /
    • v.10 no.3
    • /
    • pp.217-223
    • /
    • 2001
  • Where no records are available at a site, a preliminary estimate may be made from relations between floods and catchment chatacteristics. A number of these chatacteristics were chosen for testing and were measured for those catchments where mean annual flood estimates were available. Although the improvement using extended data in regression of flood estimates on catchment characteristics was small, this may be due to the limitations of the regression model. When an individual short term record is to be extended, more detailed attention can be given; an example is presented of the technique which should be adopted in practice, particularly when a short term record covers a period which is known to be biassed. A method of extending the peaks over a threshold series is presented with a numerical example. The extension of records directly from rainfall by means of a conceptual model is discussed, although the application of such methods is likely to be limited by lack of recording raingauge information. Methods of combining information from various sources are discussed in terms of information from catchment characteristics supplemented by records. but are generally applicable to different sources of information. The application of this technique to estimating the probable maximum flood requires more conservative assumptions about the antecedent condition, storm profile and unit hydrograph. It is suggested that the profile and catchment wetness index at the start of the design duration should be based on the assumption that the estimated maximum rainfall occurs in all durations centered on the storm peak.

  • PDF

Study on Electric Stimulus Pattern in Cochlear Implant Using a Computer Model (신경모델링을 이용한 인공와우 전기자극 패턴 연구)

  • Yang, Hyejin;Woo, Jihwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.249-255
    • /
    • 2012
  • A cochlear implant system uses charge-balanced biphasic pulses that are known to reduce tissue damage than monophasic pulses. In this study, we investigated effect of pulse pattern on neural responses using a computer model, based on the Hodgkin-Huxley equation. Electric pulse phase, pulse duration, and phase gap have been systematically varied to characterize auditory nerve responses. The results show that neural responses, dynamic range and threshold are represented as a function of stimulus patterns and duration. The results could greatly extend to develop more efficient cochlear implant stimulation.

Influence of seismic design rules on the robustness of steel moment resisting frames

  • Cassiano, David;D'Aniello, Mario;Rebelo, Carlos;Landolfo, Raffaele;da Silva, Luis S.
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.479-500
    • /
    • 2016
  • Seismic design criteria allow enhancing the structural ductility and controlling the damage distribution. Therefore, detailing rules and design requirements given by current seismic codes might be also beneficial to improve the structural robustness. In this paper a comprehensive parametric study devoted to quantifying the effectiveness of seismic detailing for steel Moment Resisting Frames (MRF) in limiting the progressive collapse under column loss scenarios is presented and discussed. The overall structural performance was analysed through nonlinear static and dynamic analyses. With this regard the following cases were examined: (i) MRF structures designed for wind actions according to Eurocode 1; (ii) MRF structures designed for seismic actions according to Eurocode 8. The investigated parameters were (i) the number of storeys; (ii) the interstorey height; (iii) the span length; (iv) the building plan layout; and (v) the column loss scenario. Results show that structures designed according to capacity design principles are less robust than wind designed ones, provided that the connections have the same capacity threshold in both cases. In addition, the numerical outcomes show that both the number of elements above the removed column and stiffness of beams are the key parameters in arresting progressive collapse.

The analysis of the relation between noise induced hearing loss and noise exposure (소음유발 청력손실과 소음폭로에 대한 연구)

  • 장호경
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.217-225
    • /
    • 1998
  • In this paper, the analysis of the relation between noise induced hearing loss and noise exposure is described for the A-weighted noise levels and exposure duration. The hearing loss and sensitivity threshold shift is investigated by changing the various parameters such as the effects of aging and noise exposure. Total hearing loss is proportional to a function of exposure level based upon the integral of pressure with time. If the noise exposure term is large so that the presbycusis may be neglected, the hearing loss due to aging and noise exposure becomes the noise induced hearing loss. It is shown that exposure to excessive noise can cause temporary loss of hearing that may become permanent if the exposure is prolonged or intense. An audiogram taken from a person suffering from noise induced hearing loss will usually show the greatest loss of hearing sensitivity in the 4kHz region, which is typically the region most sensitive to damage resulting from many types of industrial noise.

  • PDF