Browse > Article
http://dx.doi.org/10.12989/scs.2016.21.3.479

Influence of seismic design rules on the robustness of steel moment resisting frames  

Cassiano, David (ISISE, University of Coimbra)
D'Aniello, Mario (ISISE, University of Coimbra)
Rebelo, Carlos (ISISE, University of Coimbra)
Landolfo, Raffaele (Department of Structures for Engineering and Architecture, University of Naples "Federico II")
da Silva, Luis S. (ISISE, University of Coimbra)
Publication Information
Steel and Composite Structures / v.21, no.3, 2016 , pp. 479-500 More about this Journal
Abstract
Seismic design criteria allow enhancing the structural ductility and controlling the damage distribution. Therefore, detailing rules and design requirements given by current seismic codes might be also beneficial to improve the structural robustness. In this paper a comprehensive parametric study devoted to quantifying the effectiveness of seismic detailing for steel Moment Resisting Frames (MRF) in limiting the progressive collapse under column loss scenarios is presented and discussed. The overall structural performance was analysed through nonlinear static and dynamic analyses. With this regard the following cases were examined: (i) MRF structures designed for wind actions according to Eurocode 1; (ii) MRF structures designed for seismic actions according to Eurocode 8. The investigated parameters were (i) the number of storeys; (ii) the interstorey height; (iii) the span length; (iv) the building plan layout; and (v) the column loss scenario. Results show that structures designed according to capacity design principles are less robust than wind designed ones, provided that the connections have the same capacity threshold in both cases. In addition, the numerical outcomes show that both the number of elements above the removed column and stiffness of beams are the key parameters in arresting progressive collapse.
Keywords
robustness; progressive collapse; pushdown; dynamic analysis; seismic design; MRF;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hayes, J., Woodson, S., Pekelnicky, R., Poland, C., Corley, W. and Sozen, M. (2005), "Can strengthening for earthquake improve blast and progressive collapse resistance?", J. Struct. Eng., 131(8), 1157-1177.   DOI
2 Izzudin, B., Vlassis, A., Elghazouli, A. and Nethercot, D. (2008), "Progressive collapse of multi-storey buildings due to sudden column loss - Part I: Simplified assessment framework", Eng. Struct., 30(5), 1308-1318.   DOI
3 Jahromi, H. (2009), "Progressive collapse of building structures - Influence of membrane action in floor slabs", M.Sc. Dissertation; Imperial College London, London, UK.
4 Khandelwal, K., El-Tawil, S., Kunnath, S. and Lew, H. (2008), "Macromodel-Based Simulation of Progressive Collapse: Steel Frame Structures", J. Struct. Eng., 137(7), 1070-1078.
5 Kim, T. and Kim, J. (2009), "Collapse analysis of steel moment frames with various seismic connections", J. Const. Steel Res., 65, 1316-1322.   DOI
6 Lalani, M. and Shuttleworth, E.P. (1990), "The ultimate state of offshore platforms using reserve and residual strength principles", Proceedings of the 22nd Offshore Technology Conference, Houston, TX, USA, May.
7 Lu, D., Cui, S., Song, P. and Chen, Z. (2012), "Robustness assessment for progressive collapse of framed structures using pushdown analysis method", Int. J. Reliab. Saf., 6(1-3), 15-37.   DOI
8 Ruth, P., Marchand, K. and Williamson, E. (2006), "Static equivalency in progressive collapse alternate path analysis: Reducing conservatism while retaining structural integrity", J. Perf. Constr. Fac., 20(4), 349-364.   DOI
9 Starossek, U. and Haberland, M. (2008), "Approaches to measures of structural robustness", Proceedings of IABMAS'08, 4th International Conference on Bridge Maintenance, Safety and Management, Seoul, Korea, July.
10 Tsai, M., and Lin, B. (2009), "Dynamic amplfication factor for progressive collapse resistance analysis of a RC building", Struct. Des. Tall Sp. Build., 18(5), 469-486.   DOI
11 Tartaglia, R., D'Aniello, M. and Landolfo, R. (2016), "Nonlinear performance of extended stiffened end plate bolted beam-to-column joints subjected to column removal", Op. Civ. Eng. J.
12 Tenchini, A., D'Aniello, M., Rebelo, C., Landolfo, R., da Silva, L.S. and Lima, L. (2014), "Seismic performance of dual-steel moment resisting frames", J. Const. Steel Res., 101, 437-454.   DOI
13 USDoD (2005), United Facilities Criteria (UFC) - Design of buildings to resist progressive collapse.
14 USDoD (2009), United Facilities Criteria (UFC) - Design of buildings to resist progressive collapse.
15 USDoD (2013), United Facilities Criteria (UFC) - Design of buildings to resist progressive collapse.
16 Xu, G. and Ellingwood, B. (2011), "Probabilistic assessment of pre-Northridge steel moment resisting frames", J. Struct. Eng., 137, 925-934.   DOI
17 Alashker, Y., Honghao, L. and El-Tawil, S. (2011), "Approximations in progressive collapse modelling", J. Struct. Eng., 137(9), 914-924.   DOI
18 ASCE (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings - FEMA 356, Washington D.C., USA.
19 Baker, J.W., Schubert, M. and Faber, M.H. (2008), "On the assessment of robustness", Struct. Safety, 30(3), 253-267.   DOI
20 CEN (2004), EN 1998-1 - Eurocode 8 - Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings, Brussels, Belgium.
21 CEN (2005), EN 1993-1-1 - Eurocode 3 - Design of steel structures - Part 1-1: General rules and rules for buildings, Brussels, Belgium.
22 CEN (2006), EN 1991-1-7 - Eurocode 1 - Actions on structures - Part 1-7: General actions - Accidental actions, Brussels, Belgium.
23 Comeliau, L., Demonceau, J.F. and Jaspart, J.P. (2010), "Robustness of steel and composite buildings under impact loading", SDSS'Rio 2010 Stability and Ductility of Steel Structures, Rio de Janeiro, Brazil, September.
24 CSI (2009), CSI Analysis Reference Manual - For SAP 2000, ETABS and SAFE, CSI, Berkeley, CA, USA.
25 D'Aniello, M., Landolfo, R., Piluso, V. and Rizzano, G. (2012), "Ultimate behaviour of steel beams under non-uniform bending", J. Const. Steel Res., 78, 144-158.   DOI
26 Dassault (2013), Abaqus 6.13 - Abaqus Analysis User's Manual.
27 D'Aniello, M., Guneyisi, E.M., Landolfo, R. and Mermerdas, K. (2014), "Analytical prediction of available rotation capacity of cold-formed rectangular and square hollow section beams", Thin-Wall. Struct., 77, 141-152.   DOI
28 D'Aniello, M., Guneyisi, E.M., Landolfo, R. and Mermerdas, K. (2015), "Predictive models of the flexural overstrength factor for steel thin-walled circular hollow section beams", Thin-Wall. Struct., 94, 67-78.   DOI
29 Dassault (2010), Abaqus 6.13 - Abaqus Analysis User's Manual.
30 Della Corte, G., D'Aniello, M. and Landolfo, R. (2013), "Analytical and numerical study of plastic overstrength of shear links", J. Const. Steel Res., 82, 19-32.   DOI
31 Dinu, F., Dubina, D. and Marginean, I. (2015), "Improving the structural robustness of multi-storey steelframe buildings", Struct. Infrastr. Eng., 11(8), 1028-1041.   DOI
32 El-Tawil, S., Li, H. and Kunnath, S. (2014), "Computational simulation of gravity-induced progressive collapse of steel-frame buildings: Current trends and future research needs", J. Struct. Eng., 140(8), 216-228.
33 Formisano, A. and Mazzolani, F.M. (2010), "On the catenary effect of steel buildings", COST ACTION C26: Urban Habitat Constructions under Catastrophic Events - Proceedings of the Final Conference, Naples, Italy, September, 619-624.
34 Formisano, A. and Mazzolani, F.M. (2012), "Progressive collapse and robustness of steel framed structures", Proceedings of the 11th International Conference on Computational Structures Technology, Stirlingshire, Scotland, month.
35 Gerasimidis, S. and Baniotopoulos, C. (2015), "Progressive collapse mitigation of 2D steel moment frames: assessing the effect of different strengthening schemes", Stahlbau, 84(5), 324-331.   DOI
36 Formisano, A., Landolfo, R. and Mazzolani, F.M. (2015), "Robustness assessment approaches for steel framed structures under catastrophic events", Comput. Struct., 147, 216-228.   DOI
37 Fu, F. (2010), "3-D nonlinear dynamic progressive collapse analysis of multi-storey steel composite frame buildings - Parametric study", Eng. Struct., 32(12), 3974-3980.   DOI
38 Gerasimidis, S. (2014), "Analytical assessment of steel frames progressive collapse vulnerability to corner column loss", J. Const. Steel Res., 95, 1-9.   DOI
39 Gerasimidis, S., Deodatis, G., Kontoroupi, T. and Ettouney, M. (2014), "Loss-of-stability induced progressive collapse modes in 3D steel moment frames", Struct. Infrastr. Eng., 11(3), 334-344.   DOI
40 Grecea, D., Dinu, F. and Dubina, D. (2004), "Performance criteria for MR steel frames in seismic zones", J. Const. Steel Res., 60(3-5), 739-749.   DOI
41 GSA (2003), Progressive Collapse Analysis and Guidelines for New Federal Office Buildings and Major Modernization Projects.
42 Guneyisi, E.M., D'Aniello, M., Landolfo, R. and Mermerdas, K. (2013), "A novel formulation of the flexural overstrength factor for steel beams", J. Const. Steel Res., 90, 60-71.   DOI
43 Guneyisi, E.M., D'Aniello, M., Landolfo, R. and Mermerdas, K. (2014), "Prediction of the flexural overstrength factor for steel beams using artificial neural network", Steel Compos. Struct., Int. J., 17(3), 215-236.   DOI